-
1
-
-
0000356348
-
Probability inequalities for empirical processes and a law of the iterated logarithm for empirical processes
-
Alexander K. S. Probability inequalities for empirical processes and a law of the iterated logarithm for empirical processes. Ann. Probab. 12:1984;1041-1067.
-
(1984)
Ann. Probab.
, vol.12
, pp. 1041-1067
-
-
Alexander, K.S.1
-
2
-
-
0001535864
-
A uniform central limit theorem for set-indexed partial-sum processes with finite variance
-
Alexander K. S., Pyke R. A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14:1986;582-597.
-
(1986)
Ann. Probab.
, vol.14
, pp. 582-597
-
-
Alexander, K.S.1
Pyke, R.2
-
3
-
-
0001240707
-
Central limit theorems for stochastic processes under random entropy conditions
-
Alexander K. S. Central limit theorems for stochastic processes under random entropy conditions. Probab. Theory Rel. Fields. 75:1987a;351-378.
-
(1987)
Probab. Theory Rel. Fields
, vol.75
, pp. 351-378
-
-
Alexander, K.S.1
-
4
-
-
0000364890
-
The central limit theorem for empirical processes on Vapnik-Chervonenkis classes
-
Alexander K. S. The central limit theorem for empirical processes on Vapnik-Chervonenkis classes. Ann. Probab. 15:1987a;178-203.
-
(1987)
Ann. Probab.
, vol.15
, pp. 178-203
-
-
Alexander, K.S.1
-
6
-
-
3042744062
-
Partial-sum processes with random locations and indexed by Vapnik-Chervonenkis classes of sets in arbitrary sample spaces
-
Boston: Birkhäuser. p. 379-389
-
Arcones M. A., Gaenssler P., Ziegler K. Partial-sum processes with random locations and indexed by Vapnik-Chervonenkis classes of sets in arbitrary sample spaces. Probability in Banach spaces. 1992;Birkhäuser, Boston. p. 379-389.
-
(1992)
Probability in Banach Spaces
-
-
Arcones, M.A.1
Gaenssler, P.2
Ziegler, K.3
-
7
-
-
0000085083
-
Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets
-
Bass R. F., Pyke R. Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets. Ann. Probab. 12:1984;13-34.
-
(1984)
Ann. Probab.
, vol.12
, pp. 13-34
-
-
Bass, R.F.1
Pyke, R.2
-
8
-
-
0000421687
-
Central limit theorems for empirical measures
-
Dudley R. M. Central limit theorems for empirical measures. Ann. Probab. 6:1978;899-929.
-
(1978)
Ann. Probab.
, vol.6
, pp. 899-929
-
-
Dudley, R.M.1
-
9
-
-
0006772472
-
A course on empirical processes
-
New York/Berlin: Springer-Verlag. p. 1-142
-
Dudley R. M. A course on empirical processes. Lecture Notes in Math. 1984;Springer-Verlag, New York/Berlin. p. 1-142.
-
(1984)
Lecture Notes in Math.
-
-
Dudley, R.M.1
-
10
-
-
0011043642
-
On functional limit theorems for a class of stochastic processes indexed by pseudo-metric parameter spaces (with applications to empirical processes
-
1986
-
P. Gaenssler, W. Schneemeier, 1986, On functional limit theorems for a class of stochastic processes indexed by pseudo-metric parameter spaces (with applications to empirical processes, Probability in Banach Spaces 6, Proc. of the Sixth Int. Conf. Denmark 1986.
-
(1986)
Probability in Banach Spaces 6, Proc. of the Sixth Int. Conf. Denmark
-
-
Gaenssler, P.1
Schneemeier, W.2
-
14
-
-
0011002593
-
On weak convergence of certain processes indexed by pseudo-metric parameter spaces with applications to empirical processes
-
P. Gaenssler, 1992, On weak convergence of certain processes indexed by pseudo-metric parameter spaces with applications to empirical processes, Trans. 11th Prague Conference, 49, 78.
-
(1992)
Trans. 11th Prague Conference
, pp. 49
-
-
Gaenssler, P.1
-
15
-
-
0011035806
-
On recent developments in the theory of set-indexed processes. A unified approach to empirical and partial-sum processes
-
Heidelberg: Physica Verlag. p. 87-109
-
Gaenssler P. On recent developments in the theory of set-indexed processes. A unified approach to empirical and partial-sum processes. Asymptotic Statistics. 1993;Physica Verlag, Heidelberg. p. 87-109.
-
(1993)
Asymptotic Statistics
-
-
Gaenssler, P.1
-
16
-
-
0011049556
-
A uniform law of large numbers for set-indexed processes with applications to empirical and partial-sum processes
-
Boston: Birkhäuser. p. 385-400
-
Gaenssler P., Ziegler K. A uniform law of large numbers for set-indexed processes with applications to empirical and partial-sum processes. Probability in Banach Spaces. 1994a;Birkhäuser, Boston. p. 385-400.
-
(1994)
Probability in Banach Spaces
-
-
Gaenssler, P.1
Ziegler, K.2
-
17
-
-
0000372807
-
On function-indexed partial-sum processes
-
B. Grigelonis. VSP/TEV Vilnius
-
Gaenssler P., Ziegler K. On function-indexed partial-sum processes. Grigelonis B. Prob. Theory and Math. Stat. 1994b;285-311 VSP/TEV Vilnius.
-
(1994)
Prob. Theory and Math. Stat.
, pp. 285-311
-
-
Gaenssler, P.1
Ziegler, K.2
-
18
-
-
0000145024
-
Some limit theorems for empirical processes
-
Giné E., Zinn J. Some limit theorems for empirical processes. Ann. Probab. 12:1984;929-989.
-
(1984)
Ann. Probab.
, vol.12
, pp. 929-989
-
-
Giné, E.1
Zinn, J.2
-
19
-
-
0002501936
-
Lectures on the central limit theorem for empirical processes
-
Giné E., Zinn J. Lectures on the central limit theorem for empirical processes. Lecture Notes in Math. 1221:1986;50-113.
-
(1986)
Lecture Notes in Math.
, vol.1221
, pp. 50-113
-
-
Giné, E.1
Zinn, J.2
-
21
-
-
0001786507
-
On the central limit theorem for empirical measures
-
Kolchinskii V. I. On the central limit theorem for empirical measures. Theor. Probab. Math. Statist. 24:1981;71-82.
-
(1981)
Theor. Probab. Math. Statist.
, vol.24
, pp. 71-82
-
-
Kolchinskii, V.I.1
-
22
-
-
84913407026
-
A remark on empirical measures
-
P. Bickel, K. Doksum, & J. Hodges. Belmont: Wadsworth
-
LeCam L. A remark on empirical measures. Bickel P., Doksum K., Hodges J. Festschrift for E. L. Lehmann. 1983;305-327 Wadsworth, Belmont.
-
(1983)
Festschrift for E. L. Lehmann
, pp. 305-327
-
-
LeCam, L.1
-
23
-
-
0000886320
-
Comparison theorems, random geometry and some limit theorems for empirical processes
-
Ledoux M., Talagrand M. Comparison theorems, random geometry and some limit theorems for empirical processes. Ann. Probab. 17:1989;596-631.
-
(1989)
Ann. Probab.
, vol.17
, pp. 596-631
-
-
Ledoux, M.1
Talagrand, M.2
-
25
-
-
0002941503
-
Estimation of intensity measures of poisson point processes
-
Kluwer Academic, Dordrecht/Boston/London
-
F. Liese, 1990, Estimation of Intensity Measures of Poisson Point Processes, Transactions of the Eleventh Prague Conference, A, 121, 139, Kluwer Academic, Dordrecht/Boston/London.
-
(1990)
Transactions of the Eleventh Prague Conference
, vol.A
, pp. 121
-
-
Liese, F.1
-
26
-
-
0000135974
-
Weak convergence of the empirical characteristic function
-
Marcus M. Weak convergence of the empirical characteristic function. Ann. Probab. 9:1981;194-201.
-
(1981)
Ann. Probab.
, vol.9
, pp. 194-201
-
-
Marcus, M.1
-
28
-
-
0001620303
-
Lévy's Brownian motion as a set-indexed processes and a related central limit theorem
-
Ossiander M., Pyke R. Lévy's Brownian motion as a set-indexed processes and a related central limit theorem. Stoch. Processes Appl. 21:1985;133-145.
-
(1985)
Stoch. Processes Appl.
, vol.21
, pp. 133-145
-
-
Ossiander, M.1
Pyke, R.2
-
30
-
-
84974270535
-
A central limit theorem for empirical measures
-
Pollard D. A central limit theorem for empirical measures. J. Austral. Math. Soc. Ser. A. 33:1982;235-248.
-
(1982)
J. Austral. Math. Soc. Ser. A
, vol.33
, pp. 235-248
-
-
Pollard, D.1
-
34
-
-
0001598963
-
A uniform central limit theorem for partial-sum processes indexed by sets
-
J.F.C. Kingman, & G.E.H. Reuter. Cambridge: Cambridge Univ. Press
-
Pyke R. A uniform central limit theorem for partial-sum processes indexed by sets. Kingman J. F. C., Reuter G. E. H. Probability, Statistics, and Analysis. 1983;219-240 Cambridge Univ. Press, Cambridge.
-
(1983)
Probability, Statistics, and Analysis
, pp. 219-240
-
-
Pyke, R.1
-
38
-
-
0010957838
-
Some new Vapnik-Chervonenkis classes
-
Stengle G., Yukich J. E. Some new Vapnik-Chervonenkis classes. Ann. Statist. 17:1989;1441-1446.
-
(1989)
Ann. Statist.
, vol.17
, pp. 1441-1446
-
-
Stengle, G.1
Yukich, J.E.2
-
41
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik V. N., Chervonenkis A. Ya. On the uniform convergence of relative frequencies of events to their probabilities. Theor. Probab. Appl. 16:1971;264-280.
-
(1971)
Theor. Probab. Appl.
, vol.16
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Ya.2
-
44
-
-
0001581756
-
Weak convergence of smoothed empirical processes
-
Yukich J. E. Weak convergence of smoothed empirical processes. Scand. J. Statist. 19:1992;271-279.
-
(1992)
Scand. J. Statist.
, vol.19
, pp. 271-279
-
-
Yukich, J.E.1
|