-
1
-
-
0024750016
-
-
m). IEEE Trans. Computers, 38: 1383-1386.
-
m). IEEE Trans. Computers, 38: 1383-1386.
-
-
-
-
2
-
-
0030212062
-
-
m). Electronics Lett., 32: 17.
-
m). Electronics Lett., 32: 17.
-
-
-
-
3
-
-
84968467386
-
On orders of optimal normal basis generatons
-
Gao, S. and S. Vanstone, 1995. On orders of optimal normal basis generatons. Math. Computation, 64: 1227-1233.
-
(1995)
Math. Computation
, vol.64
, pp. 1227-1233
-
-
Gao, S.1
Vanstone, S.2
-
4
-
-
0033696174
-
-
m). In Proceedings of 13th Annual International ASIC/SOC Conference, pp: 97-101.
-
m). In Proceedings of 13th Annual International ASIC/SOC Conference, pp: 97-101.
-
-
-
-
5
-
-
0001492981
-
A modified Massey-Omura parallel multiplier for a class of finite fields
-
Hasan, M.A., M.Z. Wang and V.K. Bhargava, 1993. A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Comput., 42: 1278-1280.
-
(1993)
IEEE Trans. Comput
, vol.42
, pp. 1278-1280
-
-
Hasan, M.A.1
Wang, M.Z.2
Bhargava, V.K.3
-
6
-
-
0000827611
-
-
m) using normal basis. Inform. Comput., 78: 171-177.
-
m) using normal basis. Inform. Comput., 78: 171-177.
-
-
-
-
7
-
-
0030736281
-
-
m). Electronics Letters.
-
m). Electronics Letters.
-
-
-
-
8
-
-
84968503742
-
Elliptic curve cryptosystems
-
Koblitz, N., 1987. Elliptic curve cryptosystems. Mathematics of Computation, 48: 203-209.
-
(1987)
Mathematics of Computation
, vol.48
, pp. 203-209
-
-
Koblitz, N.1
-
9
-
-
0032023646
-
Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields
-
Koc, C. K. and B. Sunar, 1998. Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. Comput., 47: 353-356.
-
(1998)
IEEE Trans. Comput
, vol.47
, pp. 353-356
-
-
Koc, C.K.1
Sunar, B.2
-
10
-
-
0003999090
-
-
Cambridge University Press, Cambridge, UK, Revised Edition
-
Lidl, R. and H. Niederreiter, 1994. Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge, UK., Revised Edition.
-
(1994)
Introduction to Finite Fields and Their Applications
-
-
Lidl, R.1
Niederreiter, H.2
-
11
-
-
0004216195
-
Computational method and apparatus for finite field arithmetic
-
US Patent No. 4: 587, 627
-
Massey, J.L. and J.K. Omura, 1986. Computational method and apparatus for finite field arithmetic. US Patent No. 4: 587, 627.
-
(1986)
-
-
Massey, J.L.1
Omura, J.K.2
-
13
-
-
0004129394
-
-
Kluwer Academic Publishers, Boston, MA
-
Menezes, A.J., I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone and T. Yaghoobian, 1993. Applications of Finite Fields. Kluwer Academic Publishers, Boston, MA.
-
(1993)
Applications of Finite Fields
-
-
Menezes, A.J.1
Blake, I.F.2
Gao, X.3
Mullin, R.C.4
Vanstone, S.A.5
Yaghoobian, T.6
-
14
-
-
45549114790
-
-
m). Discrete Appl. Math., 22: 149-161.
-
m). Discrete Appl. Math., 22: 149-161.
-
-
-
-
15
-
-
0036566216
-
-
m). IEEE Trans. Comput., 51: 511-520.
-
m). IEEE Trans. Comput., 51: 511-520.
-
-
-
-
18
-
-
0035107422
-
An efficient optimal normal basis Type II multiplier
-
Sunar, B. and C.K. Koc, 2001. An efficient optimal normal basis Type II multiplier. IEEE Trans. Comput., 50: 83-88.
-
(2001)
IEEE Trans. Comput
, vol.50
, pp. 83-88
-
-
Sunar, B.1
Koc, C.K.2
-
19
-
-
0035333542
-
-
m). Using normal basis. IEEE Transactions on Computers, 50: 394-398.
-
m). Using normal basis. IEEE Transactions on Computers, 50: 394-398.
-
-
-
-
20
-
-
0022108239
-
-
m). IEEE Trans. Comput, 34: 709-716.
-
m). IEEE Trans. Comput, 34: 709-716.
-
-
-
-
21
-
-
0036859286
-
Finite field multiplier using redundant representation
-
Wu, H., A. Hasan, I. Blake and S. Gao, 2002. Finite field multiplier using redundant representation. IEEE Trans. Comput., 51: 1306-1316.
-
(2002)
IEEE Trans. Comput
, vol.51
, pp. 1306-1316
-
-
Wu, H.1
Hasan, A.2
Blake, I.3
Gao, S.4
-
22
-
-
0030783572
-
-
m). Electronics Lett., 33: 196-197.
-
m). Electronics Lett., 33: 196-197.
-
-
-
|