-
1
-
-
1642365792
-
-
Cf. NONLE5 0951-7715 10.1088/0951-7715/17/2/R01
-
Cf. M. Peyrard, Nonlinearity NONLE5 0951-7715 10.1088/0951-7715/17/2/R01 17, R1 (2004) and references cited therein.
-
(2004)
Nonlinearity
, vol.17
, pp. 1
-
-
Peyrard, M.1
-
2
-
-
2342498193
-
-
NARHAD 0305-1048 10.1093/nar/gkh335
-
C. H. Choi, G. Kalosakas, K. O. Rasmussen, M. Hiromura, A. R. Bishop, and A. Usheva, Nucleic Acids Res. NARHAD 0305-1048 10.1093/nar/gkh335 32, 1584 (2004).
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 1584
-
-
Choi, C.H.1
Kalosakas, G.2
Rasmussen, K.O.3
Hiromura, M.4
Bishop, A.R.5
Usheva, A.6
-
3
-
-
5744255023
-
-
EULEEJ 0295-5075 10.1209/epl/i2004-10167-8
-
G. Kalosakas, K. O. Rasmussen, M. Hiromura, A. R. Bishop, C. H. Choi, and A. Usheva, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i2004-10167-8 68, 127 (2004).
-
(2004)
Europhys. Lett.
, vol.68
, pp. 127
-
-
Kalosakas, G.1
Rasmussen, K.O.2
Hiromura, M.3
Bishop, A.R.4
Choi, C.H.5
Usheva, A.6
-
4
-
-
28844464259
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.218104
-
T. S. van Erp, S. Cuesta-Lopez, J.-G. Hagmann, and M. Peyrard, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.218104 95, 218104 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 218104
-
-
Van Erp, T.S.1
Cuesta-Lopez, S.2
Hagmann, J.-G.3
Peyrard, M.4
-
5
-
-
33745205353
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.239801
-
C. H. Choi, A. Usheva, G. Kalosakas, K. O. Rasmussen, and A. R. Bishop, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.239801 96, 239801 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 239801
-
-
Choi, C.H.1
Usheva, A.2
Kalosakas, G.3
Rasmussen, K.O.4
Bishop, A.R.5
-
6
-
-
33745242559
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.239802
-
T. S. van Erp, S. Cuesta-Lopez, J.-G. Hagmann, and M. Peyrard, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.239802 96, 239802 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 239802
-
-
Van Erp, T.S.1
Cuesta-Lopez, S.2
Hagmann, J.-G.3
Peyrard, M.4
-
7
-
-
4243187319
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.62.2755
-
M. Peyrard and A. R. Bishop, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.62.2755 62, 2755 (1989)
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 2755
-
-
Peyrard, M.1
Bishop, A.R.2
-
12
-
-
42749105332
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.69.031902
-
W. Sung and J.-H. Jeon, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.69.031902 69, 031902 (2004).
-
(2004)
Phys. Rev. e
, vol.69
, pp. 031902
-
-
Sung, W.1
Jeon, J.-H.2
-
13
-
-
33847721521
-
-
S. NALEFD 1530-6984 10.1021/nl062304a
-
S. Ares and G. Kalosakas, Nano Lett. NALEFD 1530-6984 10.1021/nl062304a 7, 307 (2007).
-
(2007)
Nano Lett.
, vol.7
, pp. 307
-
-
Ares1
Kalosakas2
-
14
-
-
41549162943
-
-
The authors of Ref. analyze some preliminary data in terms of a product of an exponential function and a power law with a characteristic exponent which in the case of pure G-C chains approaches a value slightly below 2 at the critical temperature. The latter result is somewhat problematical; it implies-contrary to the known thermodynamic behavior of the model under consideration-a continuous transition and a concomitant proliferation of large-size bubbles, such that the average bubble size would diverge (cf. the results reported here and the discussion in Sec. 3).
-
The authors of Ref. analyze some preliminary data in terms of a product of an exponential function and a power law with a characteristic exponent which in the case of pure G-C chains approaches a value slightly below 2 at the critical temperature. The latter result is somewhat problematical; it implies-contrary to the known thermodynamic behavior of the model under consideration-a continuous transition and a concomitant proliferation of large-size bubbles, such that the average bubble size would diverge (cf. the results reported here and the discussion in Sec. 3).
-
-
-
-
15
-
-
6144223864
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.79.2375
-
D. Cule and T. Hwa, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.2375 79, 2375 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2375
-
-
Cule, D.1
Hwa, T.2
-
16
-
-
85003014386
-
-
edited by M. Abramowitz and I. A. Stegun (Dover, New York
-
Handbook of Mathematical Functions, edited by, M. Abramowitz, and, I. A. Stegun, (Dover, New York, 1965), p. 886.
-
(1965)
Handbook of Mathematical Functions
, pp. 886
-
-
-
17
-
-
41549087956
-
-
The astute reader will note that the probability of small-bubble formation is higher at lower temperatures. This apparently counterintuitive property is due to the definition of a bubble, which demands that the two ends be bound. Pn is a probability of a configuration of an n+2 site group; it reflects the competition between holding the ends bound (higher probability at lower temperatures) and softening the bonds of the n interior sites (higher probability at higher temperatures).
-
The astute reader will note that the probability of small-bubble formation is higher at lower temperatures. This apparently counterintuitive property is due to the definition of a bubble, which demands that the two ends be bound. Pn is a probability of a configuration of an n+2 site group; it reflects the competition between holding the ends bound (higher probability at lower temperatures) and softening the bonds of the n interior sites (higher probability at higher temperatures).
-
-
-
-
18
-
-
41549109411
-
-
The form 9 has been derived in the context of the Poland-Scheraga model, with the exponent c associated with the entropy of loops (bubbles) modeled as self-avoiding polymer chains. There is no a priori reason why the result of such a geometrically based description-which mainly reflects the dimensionality of space-should correspond to any feature of the one-dimensional nonlinear lattice dynamics of the PBD model (cf., however, below for some general arguments and a more detailed description of the meaning of the exponent c in the PBD context).
-
The form 9 has been derived in the context of the Poland-Scheraga model, with the exponent c associated with the entropy of loops (bubbles) modeled as self-avoiding polymer chains. There is no a priori reason why the result of such a geometrically based description-which mainly reflects the dimensionality of space-should correspond to any feature of the one-dimensional nonlinear lattice dynamics of the PBD model (cf., however, below for some general arguments and a more detailed description of the meaning of the exponent c in the PBD context).
-
-
-
-
19
-
-
0013952703
-
-
JCPSA6 0021-9606 10.1063/1.1727786
-
D. Poland and H. A. Scheraga, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1727786 45, 1464 (1966).
-
(1966)
J. Chem. Phys.
, vol.45
, pp. 1464
-
-
Poland, D.1
Scheraga, H.A.2
-
20
-
-
42749100750
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.68.026109
-
N. Theodorakopoulos, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.68. 026109 68, 026109 (2003).
-
(2003)
Phys. Rev. e
, vol.68
, pp. 026109
-
-
Theodorakopoulos, N.1
-
21
-
-
33748278381
-
-
Cf. PDNPDT 0167-2789 10.1016/j.physd.2005.12.020
-
Cf. S. Aubry, Physica D PDNPDT 0167-2789 10.1016/j.physd.2005.12.020 216, 1 (2006) and references therein.
-
(2006)
Physica D
, vol.216
, pp. 1
-
-
Aubry, S.1
|