메뉴 건너뛰기




Volumn 7, Issue 2, 2008, Pages 370-373

An improved algorithm on least squares support vector machines

Author keywords

Least square method; Multi resolution analysis; Nonlinear system identification; Support vector machines

Indexed keywords

IDENTIFICATION (CONTROL SYSTEMS); LEAST SQUARES APPROXIMATIONS; NONLINEAR SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 41549126648     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2008.370.373     Document Type: Article
Times cited : (9)

References (10)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2 (2): 23-34.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 23-34
    • Burges, C.J.C.1
  • 2
    • 0024700097 scopus 로고
    • A theory of multiresolution signal decomposition. The wavelet transform
    • Mallat, S, 1989. A theory of multiresolution signal decomposition. The wavelet transform. IEEE. Trans., PAMI., 11 (7): 674-693.
    • (1989) IEEE. Trans., PAMI , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 3
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • Scholkopf, B., S. Mika and C.J.C. Burges, 1999. Input space versus feature space in kernel-based methods. IEEE. Trans. Neural Networks, 10 (5): 1000-1017.
    • (1999) IEEE. Trans. Neural Networks , vol.10 , Issue.5 , pp. 1000-1017
    • Scholkopf, B.1    Mika, S.2    Burges, C.J.C.3
  • 5
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K. and J. Vandewalle, 1999. Least squares support vector machine classifiers. Neural Process. Lett., 9 (2): 293-300.
    • (1999) Neural Process. Lett , vol.9 , Issue.2 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 8
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V., 1999. An overview of statistical learning theory. IEEE. Trans. Neural Networks, 10 (5): 988-999.
    • (1999) IEEE. Trans. Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 9
    • 41549097064 scopus 로고    scopus 로고
    • Williamson, R., A. Smola and B. Scholkopf, 1999. Entropy Numbers, Operators and Support Machine Kernel, in Advances in Kernel Methods-Support Learning. Cambridge, M.A., MIT Press, pp: 127-144.
    • Williamson, R., A. Smola and B. Scholkopf, 1999. Entropy Numbers, Operators and Support Machine Kernel, in Advances in Kernel Methods-Support Learning. Cambridge, M.A., MIT Press, pp: 127-144.
  • 10
    • 0035520347 scopus 로고    scopus 로고
    • De-noising via dyadic wavelet transform
    • Zhang, Z., G. Liu and D. Enqing, 2001. De-noising via dyadic wavelet transform. J. Elect. Inform. Technol., 23(11): 1083-1090.
    • (2001) J. Elect. Inform. Technol , vol.23 , Issue.11 , pp. 1083-1090
    • Zhang, Z.1    Liu, G.2    Enqing, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.