메뉴 건너뛰기




Volumn 70, Issue 5 2, 2004, Pages

Steady shear flow thermodynamics based on a canonical distribution approach

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; ENTROPY; GRAPH THEORY; HAMILTONIANS; HYDRODYNAMICS; INTEGRATION; KINETIC ENERGY; MOLECULAR DYNAMICS; NUMERICAL ANALYSIS; SHEAR FLOW; THERMOSTATS; VISCOUS FLOW;

EID: 41349120213     PISSN: 15393755     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.70.056124     Document Type: Article
Times cited : (14)

References (81)
  • 7
    • 12144256764 scopus 로고    scopus 로고
    • S. Sasa and H. Tasaki, e-print cond-mat/0108365
    • S. Sasa and H. Tasaki, e-print cond-mat/0108365.
  • 12
    • 0035883477 scopus 로고    scopus 로고
    • M. L. Matin, P. J. Daivis, and B. D. Todd, J. Chem. Phys. 113, 9122 (2000); 115, 5338(E) (2001).
    • (2001) J. Chem. Phys. , vol.115
  • 35
    • 12144284371 scopus 로고    scopus 로고
    • note
    • Evans and Hanley also added the term -Script P Sign dν on the right-hand side of Eq. (1) to discuss the pressure Script P Sign as an energy response to a change of the volume νV in shear flow, by analogy with equilibrium thermodynamics. However, it is not evident that we: can justify such a term in nonequilibrium steady states at the level of the theory presented here. We mention some problems with the discussion of the pressure briefly in Sec. VI. In this paper, we mainly concentrate on the fixed volume case where dν=0.
  • 40
  • 43
    • 0003456712 scopus 로고
    • translated from Russian by P. J. Shepherd (Consultants Bureau, New York)
    • D. N. Zubarev, Nonequilibrium Statistical Thermodynamics, translated from Russian by P. J. Shepherd (Consultants Bureau, New York, 1974).
    • (1974) Nonequilibrium Statistical Thermodynamics
    • Zubarev, D.N.1
  • 47
    • 36049056905 scopus 로고
    • B. Robertson, Phys. Rev. 160, 175 (1967); 166, 206(E) (1968).
    • (1967) Phys. Rev. , vol.160 , pp. 175
    • Robertson, B.1
  • 48
    • 36049056905 scopus 로고
    • B. Robertson, Phys. Rev. 160, 175 (1967); 166, 206(E) (1968).
    • (1968) Phys. Rev. , vol.166
  • 58
    • 12144258140 scopus 로고    scopus 로고
    • note
    • (mov)(τ) is the phase-space momentum justified by the Lagrangian formalism, while the momentum used in the Dolls tensor dynamics is the thermal momentum, namely the mass times the velocity in the moving frame (defined by the global velocity profile).
  • 59
    • 0004270407 scopus 로고
    • translated from the Russian by J. B. Sykes and J. S. Bell (Pergamon Press, Oxford)
    • L. D. Landau and E. M. Lifshitz, Mechanics, translated from the Russian by J. B. Sykes and J. S. Bell (Pergamon Press, Oxford, 1969).
    • (1969) Mechanics
    • Landau, L.D.1    Lifshitz, E.M.2
  • 60
    • 0004056428 scopus 로고
    • translated from the Russian by J. B. Sykes and M. J. Kearsley (Pergamon Press, Oxford)
    • L. D. Landau and E. M. Lifshitz, Statistical Physics, translated from the Russian by J. B. Sykes and M. J. Kearsley (Pergamon Press, Oxford, 1968).
    • (1968) Statistical Physics
    • Landau, L.D.1    Lifshitz, E.M.2
  • 65
    • 12144250680 scopus 로고    scopus 로고
    • note
    • Equation (22) is a well known relation in equilibrium thermodynamics, but it is not obvious in nonequilibrium states such as shear flows. This is the reason why the definition of the temperature is still important in statistical mechanics. For example, see Refs. [77-79] for other attempts to define a temperature dynamically. Evans and Hanley used Eq. (22) as the definition of the temperature to discuss their shear flow thermodynamics [32], whereas Eq. (22) is the result obtained from the canonical distribution approach in this paper.
  • 66
    • 12144261996 scopus 로고    scopus 로고
    • note
    • The divergence of a nonequilibrium entropy in a steady shear flow in thermostated dynamics has been considered; for example, see Ref. [35]. However, note that the explanation for the entropy divergence in that case is different from that used here.
  • 67
    • 12144272551 scopus 로고    scopus 로고
    • note
    • 3=-1n ≡ -1, we obtain the form (19) for the canonical distribution for shear flow.
  • 78


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.