-
9
-
-
0024067854
-
-
R.W. Kolkka, D.S. Malkus, M.G. Hansen, G.R. Ierley, and R.A. Worthing, J. Non-Newtonian Fluid Mech. 29, 303 (1988).
-
(1988)
J. Non-Newtonian Fluid Mech.
, vol.29
, pp. 303
-
-
Kolkka, R.W.1
Malkus, D.S.2
Hansen, M.G.3
Ierley, G.R.4
Worthing, R.A.5
-
14
-
-
0030104960
-
-
P.T. Callaghan, M.E. Cates, C.J. Rofe, and J.B.A.F. Smeulders, J. Phys. II 6, 375 (1996).
-
(1996)
J. Phys. II
, vol.6
, pp. 375
-
-
Callaghan, P.T.1
Cates, M.E.2
Rofe, C.J.3
Smeulders, J.B.A.F.4
-
19
-
-
84957345418
-
-
J.F. Berret, D.C. Roux, G. Porte, and P. Lindner, Europhys. Lett. 25, 521 (1994).
-
(1994)
Europhys. Lett.
, vol.25
, pp. 521
-
-
Berret, J.F.1
Roux, D.C.2
Porte, G.3
Lindner, P.4
-
20
-
-
0028404238
-
-
V. Schmitt, F. Lequeux, A. Pousse, and D. Roux, Langmuir 10, 955 (1994).
-
(1994)
Langmuir
, vol.10
, pp. 955
-
-
Schmitt, V.1
Lequeux, F.2
Pousse, A.3
Roux, D.4
-
21
-
-
3442897816
-
-
E. Cappelaere, J.F. Berret, J.P. Decruppe, R. Cressely, and P. Lindner, Phys. Rev. E 56, 1869 (1997).
-
(1997)
Phys. Rev. E
, vol.56
, pp. 1869
-
-
Cappelaere, E.1
Berret, J.F.2
Decruppe, J.P.3
Cressely, R.4
Lindner, P.5
-
24
-
-
0001764738
-
-
J.P. Decruppe, R. Cressely, R. Makhloufi, and E. Cappelaere, Colloid Polym. Sci. 273, 346 (1995).
-
(1995)
Colloid Polym. Sci.
, vol.273
, pp. 346
-
-
Decruppe, J.P.1
Cressely, R.2
Makhloufi, R.3
Cappelaere, E.4
-
25
-
-
21844490262
-
-
R. Makhloufi, J.P. Decruppe, A. Aitali, and R. Cressely, Europhys. Lett. 32, 253 (1995).
-
(1995)
Europhys. Lett.
, vol.32
, pp. 253
-
-
Makhloufi, R.1
Decruppe, J.P.2
Aitali, A.3
Cressely, R.4
-
56
-
-
33645081306
-
-
note
-
The densities typically differ by only about 1%; no observable settling occurs in these systems over a time scale of several months. Even if the densities were different, this would affect only the inertial terms on the LHS of Eq. (2.13), which turn out to affect the instability only at irrelevant length scales (longer than any typical rheometer gap).
-
-
-
-
57
-
-
33645082323
-
-
note
-
2,ζ].
-
-
-
-
62
-
-
33645080526
-
-
note
-
Equations (2.20) and (2.21) together ensure zero concentration flux at the boundary, even under shear.
-
-
-
-
63
-
-
33645092752
-
-
Ph.D. thesis, University of Metz
-
S. Lerouge, Ph.D. thesis, University of Metz, 2000.
-
(2000)
-
-
Lerouge, S.1
-
67
-
-
33645086767
-
-
note
-
-1], [1], and [1]. Correspondingly, the size and direction of the vector u would have been different in different units, and any vector operations must be applied with caution.
-
-
-
-
71
-
-
33645079493
-
-
note
-
1 in the relevant time window; see Sec. V.
-
-
-
-
72
-
-
33645064651
-
-
note
-
e/dphi; of the elastic contribution to the free energy in Eq. (2.16).
-
-
-
-
73
-
-
33645055761
-
-
private communication
-
S. Lerouge (private communication).
-
-
-
Lerouge, S.1
-
75
-
-
33645056285
-
-
note
-
In the coupled model, an oscillatory instability can occur at very high shear rates, as discussed in Sec. IV C 1.
-
-
-
-
79
-
-
33645060046
-
-
note
-
k(t→∞) > 0 so that the system is always strictly unstable as t→∞
-
-
-
-
80
-
-
33645053616
-
-
note
-
inst.
-
-
-
-
81
-
-
33645078495
-
-
note
-
ss ≃ 1, hence violating the condition of Eq. (5.13).
-
-
-
-
83
-
-
84957345418
-
-
J.F. Berret, D.C. Roux, G. Porte, and P. Lindner, Europhys. Lett. 25, 521 (1994).
-
(1994)
Europhys. Lett.
, vol.25
, pp. 521
-
-
Berret, J.F.1
Roux, D.C.2
Porte, G.3
Lindner, P.4
|