-
3
-
-
84884079276
-
-
J. V. Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953)
-
J. V. Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953).
-
-
-
-
4
-
-
85036168037
-
-
J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)
-
J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982).
-
-
-
-
6
-
-
85036249176
-
-
A. Nowak, B. Latane, and M. Lewenstein, in Social Dilemmas and Cooperation, edited by U. Schulz, W. Albers, and U. Mueller (Springer, Berlin, 1994)
-
A. Nowak, B. Latane, and M. Lewenstein, in Social Dilemmas and Cooperation, edited by U. Schulz, W. Albers, and U. Mueller (Springer, Berlin, 1994).
-
-
-
-
8
-
-
0034502939
-
-
B. Oborny, À. Kun, T. Czárán, and S. Bokros, Ecology 81, 3291 (2000).
-
(2000)
Ecology
, vol.81
, pp. 3291
-
-
Oborny, B.1
Kun, À.2
Czárán, T.3
Bokros, S.4
-
11
-
-
85036386559
-
-
R. K. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)
-
R. K. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984).
-
-
-
-
12
-
-
85036306869
-
-
Social Dilemmas and Cooperation, edited by U. Schulz, W. Albers, and U. Mueller (Springer, Berlin, 1994)
-
Social Dilemmas and Cooperation, edited by U. Schulz, W. Albers, and U. Mueller (Springer, Berlin, 1994).
-
-
-
-
20
-
-
0034229832
-
-
G. Szabó, T. Antal, P. Szabó, and M. Droz, Phys. Rev. E 62, 1095 (2000).
-
(2000)
Phys. Rev. E
, vol.62
, pp. 1095
-
-
Szabó, G.1
Antal, T.2
Szabó, P.3
Droz, M.4
-
29
-
-
85036228216
-
-
C. Hauert, Evolution of Cooperation—The Prisoner’s Dilemma and its Applications as an Example (Shaker, Aachen, 1999)
-
C. Hauert, Evolution of Cooperation—The Prisoner’s Dilemma and its Applications as an Example (Shaker, Aachen, 1999).
-
-
-
-
31
-
-
85036343018
-
-
M. G. Zimmermann, V. M. Eguíluz, and M. S. Miguel, in Economics with Heterogeneous Interacting Agents, edited by A. Kirman and J.-B. Zimmermann (Springer, Berlin, 2001)
-
M. G. Zimmermann, V. M. Eguíluz, and M. S. Miguel, in Economics with Heterogeneous Interacting Agents, edited by A. Kirman and J.-B. Zimmermann (Springer, Berlin, 2001).
-
-
-
-
32
-
-
85036154406
-
-
D. Fudenberg and J. Tirole, Game Theory (MIT Press, Cambridge, 1998)
-
D. Fudenberg and J. Tirole, Game Theory (MIT Press, Cambridge, 1998).
-
-
-
-
34
-
-
85036163226
-
-
J. Weibull, Evolutionary Game Theory (MIT Press, Cambridge, 1996)
-
J. Weibull, Evolutionary Game Theory (MIT Press, Cambridge, 1996).
-
-
-
-
35
-
-
85036426233
-
-
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998)
-
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998).
-
-
-
-
36
-
-
85036423631
-
-
T. E. Harris, The Theory of Branching Processes (Springer, Berlin, 1963)
-
T. E. Harris, The Theory of Branching Processes (Springer, Berlin, 1963).
-
-
-
-
37
-
-
85036183550
-
-
P. Jagers, Branching Processes with Biological Applications (Wiley, London, 1975)
-
P. Jagers, Branching Processes with Biological Applications (Wiley, London, 1975).
-
-
-
-
38
-
-
85036434711
-
-
P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, New York, 1996)
-
P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, New York, 1996).
-
-
-
-
39
-
-
85036335141
-
-
H. J. Jensen, Self-Organized Criticality: Emergent Behavior in Physical and Biological Systems (Cambridge University Press, Cambridge, 1998)
-
H. J. Jensen, Self-Organized Criticality: Emergent Behavior in Physical and Biological Systems (Cambridge University Press, Cambridge, 1998).
-
-
-
-
41
-
-
85036270160
-
-
The resulting number of links (Formula presented) (rounded to an integer value) is distributed randomly with equal probability among all (Formula presented) possible pairs of nodes leading to a constant probability (Formula presented) that an arbitrary pair of nodes is connected
-
The resulting number of links (Formula presented) (rounded to an integer value) is distributed randomly with equal probability among all (Formula presented) possible pairs of nodes leading to a constant probability (Formula presented) that an arbitrary pair of nodes is connected.
-
-
-
-
42
-
-
85036282747
-
-
Since (Formula presented) the game defined by (Formula presented) is not a Prisoner’s dilemma in a strict sense [cf. Eq. (2)]. Furthermore, getting the same payoff in case of a defecting opponent leads to coexistence of cooperative and defective domains in the subcritical regime
-
Since (Formula presented) the game defined by (Formula presented) is not a Prisoner’s dilemma in a strict sense [cf. Eq. (2)]. Furthermore, getting the same payoff in case of a defecting opponent leads to coexistence of cooperative and defective domains in the subcritical regime.
-
-
-
|