-
1
-
-
37049158339
-
-
Stevens, T. S.; Creighton, E. M.; Gordon, A. B.; MacNicol, M. J. Chem. Soc. 1928, 3193.
-
(1928)
J. Chem. Soc
, pp. 3193
-
-
Stevens, T.S.1
Creighton, E.M.2
Gordon, A.B.3
MacNicol, M.4
-
2
-
-
0001684302
-
-
For reviews, see: a
-
For reviews, see: (a) Schöllkopf, U. Angew. Chem. 1970, 82, 795.
-
(1970)
Angew. Chem
, vol.82
, pp. 795
-
-
Schöllkopf, U.1
-
3
-
-
0000033512
-
-
Trost, B. M, Fleming, I, Eds, Pergamon: Oxford
-
(b) Markó, I. E. In Comprehensive Organic Synthesis, Vol. 4; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991, 913-974.
-
(1991)
Comprehensive Organic Synthesis
, vol.4
, pp. 913-974
-
-
Markó, I.E.1
-
4
-
-
29744470611
-
-
(c) Vanecko, J. A.; Wan, H.; West, F. G. Tetrahedron 2006, 62, 1043.
-
(2006)
Tetrahedron
, vol.62
, pp. 1043
-
-
Vanecko, J.A.1
Wan, H.2
West, F.G.3
-
5
-
-
41349102291
-
-
For mechanistic studies of [1,2]-Stevens rearrangement, see: (a) Millard, B. J.; Stevens, T. S. J. Chem. Soc. 1963, 3397.
-
For mechanistic studies of [1,2]-Stevens rearrangement, see: (a) Millard, B. J.; Stevens, T. S. J. Chem. Soc. 1963, 3397.
-
-
-
-
6
-
-
4243218273
-
-
(b) Schöllkopf, U.; Ludwig, U.; Ostermann, G.; Patsch, M. Tetrahedron Lett. 1969, 10, 3415.
-
(1969)
Tetrahedron Lett
, vol.10
, pp. 3415
-
-
Schöllkopf, U.1
Ludwig, U.2
Ostermann, G.3
Patsch, M.4
-
7
-
-
3643071087
-
-
For theoretical studies of [1,2]-Stevens rearrangement, see: (c) Heard, G. L.; Frankcombe, K. E.; Yates, B. F. Aust. J. Chem. 1993, 46, 1375.
-
For theoretical studies of [1,2]-Stevens rearrangement, see: (c) Heard, G. L.; Frankcombe, K. E.; Yates, B. F. Aust. J. Chem. 1993, 46, 1375.
-
-
-
-
9
-
-
21644453480
-
-
Recently, Somfai and co-workers reported the first example of enantioselective [2,3]-Stevens rearrangement of allylic ammonium ylide using chiral Lewis acid promoter: Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc. 2005, 127, 9352.
-
(a) Recently, Somfai and co-workers reported the first example of enantioselective [2,3]-Stevens rearrangement of allylic ammonium ylide using chiral Lewis acid promoter: Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc. 2005, 127, 9352.
-
-
-
-
10
-
-
41349112262
-
-
Also, the concomitantly occurred enantioselective [1,2]-Stevens rearrangement has been reported therein.
-
(b) Also, the concomitantly occurred enantioselective [1,2]-Stevens rearrangement has been reported therein.
-
-
-
-
11
-
-
29744446281
-
-
Asymmetric [1,2]-Stevens rearrangement using enantioenriched ammonium ylide has been reported. For the rearrangement with chiral migrating group, see: (a) Campbell, A.; Houston, A. H. J.; Kenyon, J. J. Chem. Soc. 1947, 93.
-
Asymmetric [1,2]-Stevens rearrangement using enantioenriched ammonium ylide has been reported. For the rearrangement with chiral migrating group, see: (a) Campbell, A.; Houston, A. H. J.; Kenyon, J. J. Chem. Soc. 1947, 93.
-
-
-
-
13
-
-
0000304504
-
-
(c) Joshua, H.; Gans, R.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4884.
-
(1968)
J. Am. Chem. Soc
, vol.90
, pp. 4884
-
-
Joshua, H.1
Gans, R.2
Mislow, K.3
-
16
-
-
0002752831
-
-
For the rearrangement with nitrogen chiral center, see: f
-
For the rearrangement with nitrogen chiral center, see: (f) Glaeske, K. W.; West, F. G. Org. Lett. 1999, 1, 31.
-
(1999)
Org. Lett
, vol.1
, pp. 31
-
-
Glaeske, K.W.1
West, F.G.2
-
17
-
-
33746587819
-
-
(g) Tayama, E.; Nanbara, S.; Nakai, T. Chem. Lett. 2006, 35, 478.
-
(2006)
Chem. Lett
, vol.35
, pp. 478
-
-
Tayama, E.1
Nanbara, S.2
Nakai, T.3
-
18
-
-
0001461728
-
-
Enantioselective [1,2]-Stevens rearrangement of oxonium ylide generated from a diazo compound using a chiral metal complex has been developed: (a) For a representative study using copper(I) complex, see: Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655.
-
Enantioselective [1,2]-Stevens rearrangement of oxonium ylide generated from a diazo compound using a chiral metal complex has been developed: (a) For a representative study using copper(I) complex, see: Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655.
-
-
-
-
19
-
-
0030913338
-
-
For representative studies using dirhodium(II) complex, see: (b) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Tedrow, J. S. Tetrahedron Lett. 1997, 38, 4367.
-
For representative studies using dirhodium(II) complex, see: (b) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Tedrow, J. S. Tetrahedron Lett. 1997, 38, 4367.
-
-
-
-
20
-
-
0035801851
-
-
(c) Kitagaki, S.; Yanamto, Y.; Tsutsui, H.; Anada, M.; Nakajima, M.; Hashimoto, S. Tetrahedron Lett. 2001, 42, 6361.
-
(2001)
Tetrahedron Lett
, vol.42
, pp. 6361
-
-
Kitagaki, S.1
Yanamto, Y.2
Tsutsui, H.3
Anada, M.4
Nakajima, M.5
Hashimoto, S.6
-
21
-
-
41349095619
-
-
All the ammonium salts were prepared from the corresponding α-amino ketones and alkyl bromides and purified by recrystallization
-
All the ammonium salts were prepared from the corresponding α-amino ketones and alkyl bromides and purified by recrystallization.
-
-
-
-
22
-
-
41349105676
-
-
Alkoxides were prepared from the corresponding alcohols using n-BuLi (1 equiv) at 0°C.
-
Alkoxides were prepared from the corresponding alcohols using n-BuLi (1 equiv) at 0°C.
-
-
-
-
23
-
-
85047698822
-
-
For a review of asymmetric synthesis using chiral alkoxide, see
-
For a review of asymmetric synthesis using chiral alkoxide, see: Plaquevent, J.-C.; Perrard, T.; Cahard, D. Chem. Eur. J. 2002, 8, 3300.
-
(2002)
Chem. Eur. J
, vol.8
, pp. 3300
-
-
Plaquevent, J.-C.1
Perrard, T.2
Cahard, D.3
-
24
-
-
0027980834
-
-
Alkoxide 3 has been utilized as a chiral ligand for asymmetric Michael reaction. See: Kumamoto, T.; Aoki, S.; Nakajima, M.; Koga, K. Tetrahedron: Asymmetry 1994, 5, 1431.
-
Alkoxide 3 has been utilized as a chiral ligand for asymmetric Michael reaction. See: Kumamoto, T.; Aoki, S.; Nakajima, M.; Koga, K. Tetrahedron: Asymmetry 1994, 5, 1431.
-
-
-
-
25
-
-
0034706374
-
-
Alkoxide 4 has been utilized as a chiral promoter for asymmetric hydrocyanation reaction. See: (a) Holmes, I. P.; Kagan, H. B. Tetrahedron Lett. 2000, 41, 7453.
-
Alkoxide 4 has been utilized as a chiral promoter for asymmetric hydrocyanation reaction. See: (a) Holmes, I. P.; Kagan, H. B. Tetrahedron Lett. 2000, 41, 7453.
-
-
-
-
27
-
-
23744496756
-
-
(c) Hatano, M.; Ikeno, T.; Miyamoto, T.; Ishihara, K. J. Am. Chem. Soc. 2005, 127, 10776.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 10776
-
-
Hatano, M.1
Ikeno, T.2
Miyamoto, T.3
Ishihara, K.4
-
28
-
-
0028338196
-
-
Alkoxide 5 has been utilized as a chiral initiator for asymmetric polymerization. See: Okamoto, Y.; Matsuda, M.; Nakano, T.; Yashima, E. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 309.
-
Alkoxide 5 has been utilized as a chiral initiator for asymmetric polymerization. See: Okamoto, Y.; Matsuda, M.; Nakano, T.; Yashima, E. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 309.
-
-
-
-
29
-
-
33751499839
-
-
Alkoxide 6 has been utilized as a chiral base for asymmetric elimination and chiral ligand for asymmetric alkynylation. See: (a) Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem. 1991, 56, 4264.
-
Alkoxide 6 has been utilized as a chiral base for asymmetric elimination and chiral ligand for asymmetric alkynylation. See: (a) Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem. 1991, 56, 4264.
-
-
-
-
30
-
-
0028788312
-
-
(b) Thompson, A. S.; Corley, E. G.; Huntington, M. F.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 8937.
-
(1995)
Tetrahedron Lett
, vol.36
, pp. 8937
-
-
Thompson, A.S.1
Corley, E.G.2
Huntington, M.F.3
Grabowski, E.J.J.4
-
31
-
-
41349116932
-
-
HPLC analysis was carried out on a Chiralcel OD-H column (0.46 x 25 cm) using hexane-i-PrOH (150:1; 0.5 mL/min) as the mobile phase.
-
HPLC analysis was carried out on a Chiralcel OD-H column (0.46 x 25 cm) using hexane-i-PrOH (150:1; 0.5 mL/min) as the mobile phase.
-
-
-
-
32
-
-
41349086614
-
-
A rapid racemization of a similar chiral α-amino ketone under weakly basic conditions had been observed; see ref. 5e
-
A rapid racemization of a similar chiral α-amino ketone under weakly basic conditions had been observed; see ref. 5e.
-
-
-
-
33
-
-
41349097676
-
-
All the compounds were characterized by 1H and 13C NMR analyses. Data for selected products are as follows. 1b: 1H NMR (300 MHz, CDCl3, 8.48 (d, J, 7.5 Hz, 2 H, 7.50-7.70 (m, 8 H, 6.88 (q, J, 7.2 Hz, 1 H, 5.29 (d, J, 12.0 Hz, 1 H, 5.06 (d, J, 12.0 Hz, 1 H, 3.42 (s, 3 H, 3.34 (s, 3 H, 1.79 (d, J, 7.2 Hz, 3 H, 13C NMR (75 MHz, CDCl3, 196.8, 135.4, 134.0, 133.6, 131.0, 129.9, 129.5, 129.3, 126.7, 69.4, 66.5, 48.1, 47.0, 14.1. 2b: 1H NMR (300 MHz, CDCl3, 8.46 (d, J, 6.9 Hz, 2 H, 6.90-7.50 (m, 8 H, 3.46 (d, J, 12.3 Hz, 1 H, 2.96 (d, J, 12.3 Hz, 1 H, 2.36 (s, 6 H, 1.18 (s, 3 H, 13C NMR (75 MHz, CDCl3, δ, 203.1, 137.7, 137.6, 132.5, 130.9, 130.5, 128.3, 128.1, 126.5, 72.2, 41.2, 39.0, 14.5. 14: 1H NMR (300 MHz, acetone-d6, 5.83 d, J
-
3): = 117.2, 112.7, 105.2, 84.6, 82.1, 75.6, 75.0, 71.2, 36.4, 35.6, 34.4, 33.7, 24.8, 23.8, 23.4, 17.4, 17.2.
-
-
-
-
34
-
-
41349100017
-
-
Similar reactions using alkoxides 3-5 afforded racemic 2b in 16-29% yields.
-
Similar reactions using alkoxides 3-5 afforded racemic 2b in 16-29% yields.
-
-
-
-
38
-
-
41349087472
-
-
Absolute stereochemistry of iii was confirmed by the comparison of the specific rotation of its free amine with the reported value. See: Karady, S.; Amato, J. S.; Weinstock, L. M. Tetrahedron Lett. 1984, 25, 4337.
-
Absolute stereochemistry of iii was confirmed by the comparison of the specific rotation of its free amine with the reported value. See: Karady, S.; Amato, J. S.; Weinstock, L. M. Tetrahedron Lett. 1984, 25, 4337.
-
-
-
-
39
-
-
0001210286
-
-
For representative studies on asymmetric synthesis using sugar derivatives as chiral auxiliary, see: a
-
For representative studies on asymmetric synthesis using sugar derivatives as chiral auxiliary, see: (a) Kunz, H.; Mohy, J. J. Chem. Soc., Chem. Commun. 1988, 1315.
-
(1988)
J. Chem. Soc., Chem. Commun
, pp. 1315
-
-
Kunz, H.1
Mohy, J.2
-
42
-
-
0029933526
-
-
(d) Kishida, M.; Eguchi, T.; Kakinuma, K. Tetrahedron Lett. 1996, 37, 2061.
-
(1996)
Tetrahedron Lett
, vol.37
, pp. 2061
-
-
Kishida, M.1
Eguchi, T.2
Kakinuma, K.3
-
43
-
-
84990134365
-
-
For a representative study on asymmetric synthesis using sugar derivatives as chiral ligand, see
-
(e) For a representative study on asymmetric synthesis using sugar derivatives as chiral ligand, see: Riediker, M.; Duthaler, R. O. Angew. Chem., Int. Ed. Engl. 1989, 28, 494.
-
(1989)
Angew. Chem., Int. Ed. Engl
, vol.28
, pp. 494
-
-
Riediker, M.1
Duthaler, R.O.2
-
44
-
-
37049083252
-
-
Synthesis and structural study of alkoxide 8 has been reported. See: (a) Piarulli, U.; Williams, D. N.; Floriani, C.; Gervasio, G.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1994, 1409.
-
Synthesis and structural study of alkoxide 8 has been reported. See: (a) Piarulli, U.; Williams, D. N.; Floriani, C.; Gervasio, G.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1994, 1409.
-
-
-
-
45
-
-
37049069127
-
-
(b) Piarulli, U.; Williams, D. N.; Floriani, C.; Gervasio, G.; Viterbo, D. J. Chem. Soc., Chem. Commun. 1995, 3329.
-
(1995)
J. Chem. Soc., Chem. Commun
, pp. 3329
-
-
Piarulli, U.1
Williams, D.N.2
Floriani, C.3
Gervasio, G.4
Viterbo, D.5
-
46
-
-
41349105092
-
-
Significant countercation-effect for enantioselectivity was observed, i.e., the reaction using the corresponding K or Na alkoxide of 8 afforded only the racemic 2b in moderate yields.
-
Significant countercation-effect for enantioselectivity was observed, i.e., the reaction using the corresponding K or Na alkoxide of 8 afforded only the racemic 2b in moderate yields.
-
-
-
-
47
-
-
41349086823
-
-
The enantioselectivity significantly decreased (18% ee), when one equivalent of 8 was used.
-
The enantioselectivity significantly decreased (18% ee), when one equivalent of 8 was used.
-
-
-
-
48
-
-
0001186145
-
-
The corresponding alcohols of 10, 11, and 13 have been reported: (a) For 10, see: Einhorn, C.; Luche, J. Carbohydr. Res. 1986, 155, 258.
-
The corresponding alcohols of 10, 11, and 13 have been reported: (a) For 10, see: Einhorn, C.; Luche, J. Carbohydr. Res. 1986, 155, 258.
-
-
-
-
49
-
-
24944573064
-
-
For 11, see: Luboradzki, R.; Pakulski, Z.; Sartowska, B. Tetrahedron 2005, 61, 10122.
-
(b) For 11, see: Luboradzki, R.; Pakulski, Z.; Sartowska, B. Tetrahedron 2005, 61, 10122.
-
-
-
-
50
-
-
32444434683
-
-
For 13, see: Mereyala, H. B.; Kodyry, S. R.; Cheemalapati, V. N. Tetrahedron: Asymmetry 2006, 17, 259.
-
(c) For 13, see: Mereyala, H. B.; Kodyry, S. R.; Cheemalapati, V. N. Tetrahedron: Asymmetry 2006, 17, 259.
-
-
-
-
51
-
-
41349084546
-
-
Typical Experimental Procedure: To a solution of 1,2-O-cyclohexylidene-5,6-O-(diisopropyl)methylidene-α- D-glucofuranose (14a; 104 mg, 0.29 mmol) in anhyd toluene (2 mL, was added a solution of n-BuLi (0.21 mL of 1.37 M solution in hexane, 0.29 mmol) at 0°C. After stirring for 30 min at that temperature, benzyldimethyl(α-methylphenacyl)ammonium bromide (1b; 10.0 mg, 0.029 mmol) was added. Then, the temperature of the resulting solution was allowed to rise to r.t. and the mixture was stirred for 8 h. The reaction was quenched with pH 7 phosphate buffer, and the product was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered, and the solvent was removed in vacuo. The residue was purified by silica gel chromatography to afford the α-amino ketone (S)-2b (7.0 mg, 91, 61% ee) and recovered 14a 103 mg, 99
-
4, filtered, and the solvent was removed in vacuo. The residue was purified by silica gel chromatography to afford the α-amino ketone (S)-2b (7.0 mg, 91%, 61% ee) and recovered 14a (103 mg, 99%).
-
-
-
|