메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages 249-262

A penalized latent class model for ordinal data

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOMETRY; CLASSIFICATION; CLUSTER ANALYSIS; DIAGNOSTIC PROCEDURE; HISTOLOGY; HUMAN; METHODOLOGY; NEURILEMOMA; PATHOLOGY; STANDARD; STATISTICAL MODEL; STATISTICS;

EID: 41149173077     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxm026     Document Type: Article
Times cited : (28)

References (23)
  • 1
    • 0027278563 scopus 로고
    • Quasi-symmetric latent class models, with application to rater agreement
    • AGRESTI, A. AND LANG, J. (1993). Quasi-symmetric latent class models, with application to rater agreement. Biometrics 49, 131-139.
    • (1993) Biometrics , vol.49 , pp. 131-139
    • AGRESTI, A.1    LANG, J.2
  • 4
    • 33645848939 scopus 로고    scopus 로고
    • Increasing the specificity of diagnostic criteria for schwannomatosis
    • BASER, M. E., FRIEDMAN, J. M. AND EVANS, D. G. R. (2006). Increasing the specificity of diagnostic criteria for schwannomatosis. Neurology 66, 730-732.
    • (2006) Neurology , vol.66 , pp. 730-732
    • BASER, M.E.1    FRIEDMAN, J.M.2    EVANS, D.G.R.3
  • 5
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: Understanding AIC and BIC in model selection
    • BURNHAM, K. P. AND ANDERSON, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Research 33, 261-304.
    • (2004) Sociological Methods Research , vol.33 , pp. 261-304
    • BURNHAM, K.P.1    ANDERSON, D.R.2
  • 6
    • 77956889312 scopus 로고
    • Analysis of transformation models with censored data
    • CHENG, S. C., WEI, L. J. AND YING, Z. (1995). Analysis of transformation models with censored data. Biometrika 82, 835-845.
    • (1995) Biometrika , vol.82 , pp. 835-845
    • CHENG, S.C.1    WEI, L.J.2    YING, Z.3
  • 10
    • 85041975304 scopus 로고
    • Exploratory latent structure-analysis using both identifiable and unidentifiable models
    • GOODMAN, L. A. (1974). Exploratory latent structure-analysis using both identifiable and unidentifiable models. Biometrika 61, 215-231.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • GOODMAN, L.A.1
  • 11
    • 0032382315 scopus 로고    scopus 로고
    • Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing
    • HOIJTINK, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: applications to educational testing. Statistica Sinica 8, 691-711.
    • (1998) Statistica Sinica , vol.8 , pp. 691-711
    • HOIJTINK, H.1
  • 12
    • 33751261808 scopus 로고    scopus 로고
    • Feature-specific constrained latent class analysis for genomic data
    • HOUSEMAN, E. A., COULL, B. A. AND BETENSKY, R. A. (2006). Feature-specific constrained latent class analysis for genomic data. Biometrics 62, 1062-1070.
    • (2006) Biometrics , vol.62 , pp. 1062-1070
    • HOUSEMAN, E.A.1    COULL, B.A.2    BETENSKY, R.A.3
  • 13
    • 7244221851 scopus 로고    scopus 로고
    • Building an identifiable latent class model with covariate effects on underlying and measured variables
    • HUANG, G. H. AND BANDEEN-ROCHE, K. (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika 69, 5-32.
    • (2004) Psychometrika , vol.69 , pp. 5-32
    • HUANG, G.H.1    BANDEEN-ROCHE, K.2
  • 14
    • 1642358200 scopus 로고    scopus 로고
    • Joint analysis of time-to-event and multiple binary indicators of latent classes
    • LARSEN, K. (2004). Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 60, 85-92.
    • (2004) Biometrics , vol.60 , pp. 85-92
    • LARSEN, K.1
  • 17
    • 0642281964 scopus 로고    scopus 로고
    • Model selection information criteria for non-nested latent class models
    • LIN, T. H. AND DAYTON, C. M. (1997). Model selection information criteria for non-nested latent class models. Journal of Educational and Behavioral Statistics 22, 249-264.
    • (1997) Journal of Educational and Behavioral Statistics , vol.22 , pp. 249-264
    • LIN, T.H.1    DAYTON, C.M.2
  • 19
    • 0001101196 scopus 로고
    • Efficient estimation and local identification in latent class analysis
    • MCHUGH, T. B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika 21, 331-347.
    • (1956) Psychometrika , vol.21 , pp. 331-347
    • MCHUGH, T.B.1
  • 21
    • 0001420589 scopus 로고
    • The EM algorithm for latent class analysis with equality constraints
    • MOOIJAART, A. AND VAN DER HEIJDEN, P. G. M. (1992). The EM algorithm for latent class analysis with equality constraints. Psychometrika 52, 261-269.
    • (1992) Psychometrika , vol.52 , pp. 261-269
    • MOOIJAART, A.1    VAN DER HEIJDEN, P.G.M.2
  • 22
    • 10044225751 scopus 로고    scopus 로고
    • Latent class models for mixed variables with applications in Archaeometry
    • MOUSTAKI, I. AND PAPAGEORGIOU, I. (2005). Latent class models for mixed variables with applications in Archaeometry. Computational Statistics and Data Analysis 48, 659-675.
    • (2005) Computational Statistics and Data Analysis , vol.48 , pp. 659-675
    • MOUSTAKI, I.1    PAPAGEORGIOU, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.