-
2
-
-
0038674626
-
Brownian motion with singular drift
-
Bass R.F., and Chen Z.-Q. Brownian motion with singular drift. Ann. Probab. 31 2 (2003) 791-817
-
(2003)
Ann. Probab.
, vol.31
, Issue.2
, pp. 791-817
-
-
Bass, R.F.1
Chen, Z.-Q.2
-
4
-
-
0031444990
-
The boundary Harnack principle for the fractional Laplacian
-
Bogdan K. The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 1 (1997) 43-80
-
(1997)
Studia Math.
, vol.123
, Issue.1
, pp. 43-80
-
-
Bogdan, K.1
-
5
-
-
0000736848
-
Boundary behavior of nonnegative solutions of elliptic operators in divergence form
-
Caffarelli L., Fabes E., Mortola S., and Salsa S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30 4 (1981) 621-640
-
(1981)
Indiana Univ. Math. J.
, vol.30
, Issue.4
, pp. 621-640
-
-
Caffarelli, L.1
Fabes, E.2
Mortola, S.3
Salsa, S.4
-
6
-
-
0036829105
-
Gaugeability and conditional gaugeability
-
Chen Z.-Q. Gaugeability and conditional gaugeability. Trans. Amer. Math. Soc. 354 (2002) 4639-4679
-
(2002)
Trans. Amer. Math. Soc.
, vol.354
, pp. 4639-4679
-
-
Chen, Z.-Q.1
-
7
-
-
0036882783
-
Green function estimate for censored stable processes
-
Chen Z.-Q., and Kim P. Green function estimate for censored stable processes. Probab. Theory Related Fields 124 (2002) 595-610
-
(2002)
Probab. Theory Related Fields
, vol.124
, pp. 595-610
-
-
Chen, Z.-Q.1
Kim, P.2
-
8
-
-
1842433842
-
Stability of Martin boundary under non-local Feynman-Kac perturbations
-
Chen Z.-Q., and Kim P. Stability of Martin boundary under non-local Feynman-Kac perturbations. Probab. Theory Related Fields 128 (2004) 525-564
-
(2004)
Probab. Theory Related Fields
, vol.128
, pp. 525-564
-
-
Chen, Z.-Q.1
Kim, P.2
-
9
-
-
0036630931
-
General gauge and conditional gauge theorems
-
Chen Z.-Q., and Song R. General gauge and conditional gauge theorems. Ann. Probab. 30 (2002) 1313-1339
-
(2002)
Ann. Probab.
, vol.30
, pp. 1313-1339
-
-
Chen, Z.-Q.1
Song, R.2
-
10
-
-
0039523791
-
On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions
-
Chen Z.-Q., Williams R.J., and Zhao Z. On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions. Math. Ann. 315 4 (1999) 735-769
-
(1999)
Math. Ann.
, vol.315
, Issue.4
, pp. 735-769
-
-
Chen, Z.-Q.1
Williams, R.J.2
Zhao, Z.3
-
11
-
-
34247281256
-
A new setting for potential theory
-
Chung K.L., and Rao K.M. A new setting for potential theory. Ann Inst. Fourier 30 (1980) 167-198
-
(1980)
Ann Inst. Fourier
, vol.30
, pp. 167-198
-
-
Chung, K.L.1
Rao, K.M.2
-
13
-
-
40949163015
-
-
Springer, New York
-
Chung K.L., and Walsh J.B. Markov Processes, Brownian Motion, and Time Symmetry (2005), Springer, New York
-
(2005)
Markov Processes, Brownian Motion, and Time Symmetry
-
-
Chung, K.L.1
Walsh, J.B.2
-
14
-
-
0000573290
-
Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians
-
Davies E.B., and Simon B. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59 (1984) 335-395
-
(1984)
J. Funct. Anal.
, vol.59
, pp. 335-395
-
-
Davies, E.B.1
Simon, B.2
-
15
-
-
84972575662
-
A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations
-
Fabes E.B., Garofalo N., and Salsa S. A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Illinois J. Math. 30 (1986) 536-565
-
(1986)
Illinois J. Math.
, vol.30
, pp. 536-565
-
-
Fabes, E.B.1
Garofalo, N.2
Salsa, S.3
-
16
-
-
34147145568
-
Two-sided estimates on the density of Brownian motion with singular drift
-
Kim P., and Song R. Two-sided estimates on the density of Brownian motion with singular drift. Illinois J. Math. 50 (2006) 635-688
-
(2006)
Illinois J. Math.
, vol.50
, pp. 635-688
-
-
Kim, P.1
Song, R.2
-
17
-
-
34547292589
-
Boundary Harnack principle for Brownian motions with measure-valued drifts in bounded Lipschitz domains
-
Kim P., and Song R. Boundary Harnack principle for Brownian motions with measure-valued drifts in bounded Lipschitz domains. Math. Ann. 339 1 (2007) 135-174
-
(2007)
Math. Ann.
, vol.339
, Issue.1
, pp. 135-174
-
-
Kim, P.1
Song, R.2
-
18
-
-
34147092098
-
Estimates on Green functions and the Schrödinger-type equations for non-symmetric diffusions with measure-valued drifts
-
Kim P., and Song R. Estimates on Green functions and the Schrödinger-type equations for non-symmetric diffusions with measure-valued drifts. J. Math. Anal. Appl. 332 (2007) 57-80
-
(2007)
J. Math. Anal. Appl.
, vol.332
, pp. 57-80
-
-
Kim, P.1
Song, R.2
-
19
-
-
40949100170
-
-
P. Kim, R. Song, Intrinsic ultracontractivity of non-symmetric diffusion semigroups in bounded domains, 2006. Preprint
-
P. Kim, R. Song, Intrinsic ultracontractivity of non-symmetric diffusion semigroups in bounded domains, 2006. Preprint
-
-
-
-
20
-
-
40949152172
-
-
P. Kim, R. Song, Intrinsic ultracontractivity of non-symmetric diffusions with measure-valued drifts and potentials, 2006. Preprint
-
P. Kim, R. Song, Intrinsic ultracontractivity of non-symmetric diffusions with measure-valued drifts and potentials, 2006. Preprint
-
-
-
-
21
-
-
84972514341
-
Markov processes and Martin boundaries
-
Kunita H., and Watanabe T. Markov processes and Martin boundaries. Illinois J. Math. 9 (1965) 485-526
-
(1965)
Illinois J. Math.
, vol.9
, pp. 485-526
-
-
Kunita, H.1
Watanabe, T.2
-
22
-
-
40949106191
-
-
M. Liao, Riesz representation and duality of Markov processes, Ph.D. Dissertation, Department of Mathematics, Stanford University, 1984
-
M. Liao, Riesz representation and duality of Markov processes, Ph.D. Dissertation, Department of Mathematics, Stanford University, 1984
-
-
-
-
23
-
-
40949124924
-
Representation of conditional Markov processes
-
Liu L.Q., and Zhang Y.P. Representation of conditional Markov processes. J. Math. (Wuhan) 10 1 (1990) 1-12
-
(1990)
J. Math. (Wuhan)
, vol.10
, Issue.1
, pp. 1-12
-
-
Liu, L.Q.1
Zhang, Y.P.2
-
24
-
-
0000786340
-
Minimal positive harmonic functions
-
Martin R.S. Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49 (1941) 137-172
-
(1941)
Trans. Amer. Math. Soc.
, vol.49
, pp. 137-172
-
-
Martin, R.S.1
-
25
-
-
84966248903
-
Continuity of excessive harmonic functions for certain diffusions
-
Pop-Stojanović Z.R. Continuity of excessive harmonic functions for certain diffusions. Proc. Amer. Math. Soc. 103 2 (1988) 607-611
-
(1988)
Proc. Amer. Math. Soc.
, vol.103
, Issue.2
, pp. 607-611
-
-
Pop-Stojanović, Z.R.1
-
26
-
-
34249971757
-
Excessiveness of harmonic functions for certain diffusions
-
Pop-Stojanović Z.R. Excessiveness of harmonic functions for certain diffusions. J. Theoret. Probab. 2 4 (1989) 503-508
-
(1989)
J. Theoret. Probab.
, vol.2
, Issue.4
, pp. 503-508
-
-
Pop-Stojanović, Z.R.1
-
27
-
-
0001376031
-
Mesures associés aux fonctionnelles additives de Markov. I
-
Revuz D. Mesures associés aux fonctionnelles additives de Markov. I. Trans. Amer. Math. Soc. 148 (1970) 501-531
-
(1970)
Trans. Amer. Math. Soc.
, vol.148
, pp. 501-531
-
-
Revuz, D.1
-
29
-
-
40949094168
-
On dual Markov processes
-
English translation: Theor. Probability Appl. 22 (2) (1977) 257-270, 1998
-
Shur M.G. On dual Markov processes. Teor. Verojatnost. i Primenen. 22 2 (1977) 264-278 English translation: Theor. Probability Appl. 22 (2) (1977) 257-270, 1998
-
(1977)
Teor. Verojatnost. i Primenen.
, vol.22
, Issue.2
, pp. 264-278
-
-
Shur, M.G.1
-
30
-
-
0010920504
-
The Martin compactification associated with a second order strictly elliptic partial differential operator on a manifold M
-
Topics in Probability and Lie Groups: Boundary Theory, Amer. Math. Soc., Providence, RI
-
Taylor J.C. The Martin compactification associated with a second order strictly elliptic partial differential operator on a manifold M. Topics in Probability and Lie Groups: Boundary Theory. CRM Proc. Lecture Notes vol. 28 (2001), Amer. Math. Soc., Providence, RI 153-202
-
(2001)
CRM Proc. Lecture Notes
, vol.28
, pp. 153-202
-
-
Taylor, J.C.1
|