메뉴 건너뛰기




Volumn 19, Issue 3, 2008, Pages 508-519

An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model

Author keywords

Blind source separation (BSS); Expectation maximization (EM); Independent components analysis (ICA); Maximum likelihood (ML)

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; MAGNETOCARDIOGRAPHY; MAXIMUM LIKELIHOOD; OPTIMIZATION;

EID: 40949084740     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.914154     Document Type: Article
Times cited : (28)

References (72)
  • 1
    • 0031239460 scopus 로고    scopus 로고
    • Extraction of ocular artefacts from EEG using independent component analysis
    • Sep
    • R. N. Vigario, "Extraction of ocular artefacts from EEG using independent component analysis," Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 395-404, Sep. 1997.
    • (1997) Electroencephalogr. Clin. Neurophysiol , vol.103 , Issue.3 , pp. 395-404
    • Vigario, R.N.1
  • 2
    • 33645131764 scopus 로고    scopus 로고
    • A graphical model for estimating stimulus-evoked brain responses from MEG data with large background brain activity
    • Apr
    • S. S. Nagarajan, H. T. Attias, K. E. Hild, II, and K. Sekihara, "A graphical model for estimating stimulus-evoked brain responses from MEG data with large background brain activity," NeuroImage, vol. 30, no. 2, pp. 400-416, Apr. 2006.
    • (2006) NeuroImage , vol.30 , Issue.2 , pp. 400-416
    • Nagarajan, S.S.1    Attias, H.T.2    Hild II, K.E.3    Sekihara, K.4
  • 3
    • 0037844871 scopus 로고    scopus 로고
    • A robust approach to independent component analysis of signals with high-level noise measurements
    • May
    • J. Cao, N. Murata, S. Amari, A. Cichocki, and T. Takeda, "A robust approach to independent component analysis of signals with high-level noise measurements," IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 631-645, May 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.3 , pp. 631-645
    • Cao, J.1    Murata, N.2    Amari, S.3    Cichocki, A.4    Takeda, T.5
  • 4
    • 12344278895 scopus 로고    scopus 로고
    • Fetal magnetocardiographic mapping using independent component analysis
    • Dec
    • S. Comani, D. Mantini, G. Alleva, S. Di Luzio, and G. L. Romani, "Fetal magnetocardiographic mapping using independent component analysis," Physiol. Meas., vol. 25, no. 6, pp. 1459-1472, Dec. 2004.
    • (2004) Physiol. Meas , vol.25 , Issue.6 , pp. 1459-1472
    • Comani, S.1    Mantini, D.2    Alleva, G.3    Di Luzio, S.4    Romani, G.L.5
  • 5
    • 0029345926 scopus 로고
    • Signal separation by symmetric adaptive decorrelation: Stability, convergence, and uniqueness
    • Jul
    • S. Van Gerven and D. Van Compernolle, "Signal separation by symmetric adaptive decorrelation: Stability, convergence, and uniqueness," IEEE Trans. Signal Process., vol. 43, no. 7, pp. 1602-1612, Jul. 1995.
    • (1995) IEEE Trans. Signal Process , vol.43 , Issue.7 , pp. 1602-1612
    • Van Gerven, S.1    Van Compernolle, D.2
  • 6
    • 0027678421 scopus 로고
    • Multi-channel signal separation by decorrelation
    • Oct
    • E. Weinstein, M. Feder, and A. Oppenheim, "Multi-channel signal separation by decorrelation," IEEE Trans. Speech Audio Process., vol. 1, no. 4, pp. 405-413, Oct. 1993.
    • (1993) IEEE Trans. Speech Audio Process , vol.1 , Issue.4 , pp. 405-413
    • Weinstein, E.1    Feder, M.2    Oppenheim, A.3
  • 7
    • 0031334248 scopus 로고    scopus 로고
    • A unifying criterion for blind source separation and decorrelation: Simultaneous diagonalization of correlation matrices
    • Sep
    • H.-C. Wu and J. C. Principe, "A unifying criterion for blind source separation and decorrelation: Simultaneous diagonalization of correlation matrices," Neural Netw. Signal Process., pp. 496-505, Sep. 1997.
    • (1997) Neural Netw. Signal Process , pp. 496-505
    • Wu, H.-C.1    Principe, J.C.2
  • 8
    • 33750096193 scopus 로고    scopus 로고
    • Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound
    • Sep
    • Z. Koldovsky, P. Tichavsky, and E. Oja, "Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1265-1277, Sep. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.5 , pp. 1265-1277
    • Koldovsky, Z.1    Tichavsky, P.2    Oja, E.3
  • 9
    • 1242286406 scopus 로고    scopus 로고
    • Independent component analysis based on nonparametric density estimation
    • Jan
    • R. Boscolo, H. Pan, and V. P. Roychowdhury, "Independent component analysis based on nonparametric density estimation," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 55-65, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.1 , pp. 55-65
    • Boscolo, R.1    Pan, H.2    Roychowdhury, V.P.3
  • 10
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Nov
    • A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Comput., vol. 7, no. 6, pp. 1129-1159, Nov. 1995.
    • (1995) Neural Comput , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 12
    • 27944489215 scopus 로고    scopus 로고
    • An analysis of entropy estimators for blind source separation
    • Jan
    • K. E. Hild, II, D. Erdogmus, and J. C. Principe, "An analysis of entropy estimators for blind source separation," Signal Process., vol. 86, no. 1, pp. 182-194, Jan. 2006.
    • (2006) Signal Process , vol.86 , Issue.1 , pp. 182-194
    • Hild II, K.E.1    Erdogmus, D.2    Principe, J.C.3
  • 14
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Apr
    • E. Moulines, J.-F. Cardoso, and E. Gassiat, "Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models," in Proc. Int. Conf. Acoust. Speech Signal Process., Apr. 1997, vol. 5, pp. 3617-3620.
    • (1997) Proc. Int. Conf. Acoust. Speech Signal Process , vol.5 , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.-F.2    Gassiat, E.3
  • 15
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasi-maximum likelihood approach
    • Jul
    • D. T. Pham and P. Garat, "Blind separation of mixture of independent sources through a quasi-maximum likelihood approach," IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1712-1725, Jul. 1997.
    • (1997) IEEE Trans. Signal Process , vol.45 , Issue.7 , pp. 1712-1725
    • Pham, D.T.1    Garat, P.2
  • 16
    • 84898936603 scopus 로고    scopus 로고
    • Maximum likelihood blind source separation: A context-sensitive generalization of ICA
    • Dec
    • B. A. Pearlmutter and L. C. Parra, "Maximum likelihood blind source separation: A context-sensitive generalization of ICA," Adv. Neural Inf. Process. Syst., pp. 613-619, Dec. 1996.
    • (1996) Adv. Neural Inf. Process. Syst , pp. 613-619
    • Pearlmutter, B.A.1    Parra, L.C.2
  • 18
    • 1242283941 scopus 로고    scopus 로고
    • EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
    • Mar
    • A. Delorme and S. Makeig, "EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," J. Neurosci. Methods, vol. 134, no. 1, pp. 9-21, Mar. 2004.
    • (2004) J. Neurosci. Methods , vol.134 , Issue.1 , pp. 9-21
    • Delorme, A.1    Makeig, S.2
  • 20
    • 19944392267 scopus 로고    scopus 로고
    • A unifying model for blind separation of independent sources
    • Jul
    • A. Hyvarinen, "A unifying model for blind separation of independent sources," Signal Process., vol. 85, no. 7, pp. 1419-1427, Jul. 2005.
    • (2005) Signal Process , vol.85 , Issue.7 , pp. 1419-1427
    • Hyvarinen, A.1
  • 21
    • 84898983831 scopus 로고    scopus 로고
    • Independent factor analysis with temporally structured sources
    • Nov
    • H. Attias, "Independent factor analysis with temporally structured sources," Adv. Neural Inf. Process. Syst., pp. 386-392, Nov. 2000.
    • (2000) Adv. Neural Inf. Process. Syst , pp. 386-392
    • Attias, H.1
  • 23
    • 0033329178 scopus 로고    scopus 로고
    • Blind source separation by dynamical graphical models
    • Sep
    • H. Attias, "Blind source separation by dynamical graphical models," in Proc. Int. Conf. Artif. Neural Netw., Sep. 1999, pp. 126-131.
    • (1999) Proc. Int. Conf. Artif. Neural Netw , pp. 126-131
    • Attias, H.1
  • 25
    • 3543071602 scopus 로고    scopus 로고
    • Bayesian unsupervised learning for source separation with mixture of Gaussians prior
    • Jun./Jul
    • H. Snoussi and A. Mohammad-Djafari, "Bayesian unsupervised learning for source separation with mixture of Gaussians prior," J. VLSI Signal Process. Syst., vol. 37, no. 2/3, pp. 263-279, Jun./Jul. 2004.
    • (2004) J. VLSI Signal Process. Syst , vol.37 , Issue.2-3 , pp. 263-279
    • Snoussi, H.1    Mohammad-Djafari, A.2
  • 26
    • 0006123102 scopus 로고    scopus 로고
    • Hidden Markov independent components analysis
    • W. D. Penny, R. M. Everson, and S. J. Roberts, M. Girolami, Ed, Berlin, Germany: Springer-Verlag
    • W. D. Penny, R. M. Everson, and S. J. Roberts, M. Girolami, Ed., "Hidden Markov independent components analysis," in Advances in Independent Component Analysis. Berlin, Germany: Springer-Verlag, 2000, pp. 3-22.
    • (2000) Advances in Independent Component Analysis , pp. 3-22
  • 29
    • 0030241786 scopus 로고    scopus 로고
    • Multidimensional density shaping by sigmoids
    • Sep
    • Z. Roth and Y. Baram, "Multidimensional density shaping by sigmoids," IEEE Trans. Neural Netw., vol. 7, no. 5, pp. 1291-1298, Sep. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.5 , pp. 1291-1298
    • Roth, Z.1    Baram, Y.2
  • 30
    • 0035250906 scopus 로고    scopus 로고
    • Probability density estimation using adaptive activation function neurons
    • Feb
    • S. Fiori and P. Bucciarelli, "Probability density estimation using adaptive activation function neurons," Neural Process. Lett., vol. 13, no. 1, pp. 31-42, Feb. 2001.
    • (2001) Neural Process. Lett , vol.13 , Issue.1 , pp. 31-42
    • Fiori, S.1    Bucciarelli, P.2
  • 31
    • 0036120077 scopus 로고    scopus 로고
    • Hybrid independent component analysis by adaptive LUT activation function neurons
    • Jan
    • S. Fiori, "Hybrid independent component analysis by adaptive LUT activation function neurons," Neural Netw., vol. 15, no. 1, pp. 85-94, Jan. 2002.
    • (2002) Neural Netw , vol.15 , Issue.1 , pp. 85-94
    • Fiori, S.1
  • 33
    • 0035330650 scopus 로고    scopus 로고
    • Efficient source adaptivity in independent component analysis
    • May
    • N. Vlassis and Y. Motomura, "Efficient source adaptivity in independent component analysis," IEEE Trans. Neural Netw., vol. 12, no. 3, pp. 559-566, May 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.3 , pp. 559-566
    • Vlassis, N.1    Motomura, Y.2
  • 34
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Apr
    • P. Comon, "Independent component analysis, a new concept?," Signal Process., vol. 36, no. 3, pp. 287-314, Apr. 1994.
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 35
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
    • Oct
    • H. H. Yang and S.-I. Amari, "Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information," Neural Comput., vol. 9, no. 7, pp. 1457-1482, Oct. 1997.
    • (1997) Neural Comput , vol.9 , Issue.7 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.-I.2
  • 36
    • 0030674678 scopus 로고    scopus 로고
    • Generalised independent component analysis through unsupervised learning with Bussgang properties
    • Jun
    • M. Girolami and C. Fyfe, "Generalised independent component analysis through unsupervised learning with Bussgang properties," in Proc. Int. Conf. Neural Netw., Jun. 1997, pp. 1788-1791.
    • (1997) Proc. Int. Conf. Neural Netw , pp. 1788-1791
    • Girolami, M.1    Fyfe, C.2
  • 37
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
    • Feb
    • T.-W. Lee, M. Girolami, and T. J. Sejnowski, "Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources," Neural Comput., vol. 11, no. 2, pp. 417-441, Feb. 1999.
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 38
    • 40949148867 scopus 로고    scopus 로고
    • Adaptive independent component analysis through a maximum likelihood approach
    • Oct
    • H. Liang and N. K. Logothetis, "Adaptive independent component analysis through a maximum likelihood approach," in Proc. Int. Conf. Neural Netw. Brain, Oct. 1998, pp. 353-356.
    • (1998) Proc. Int. Conf. Neural Netw. Brain , pp. 353-356
    • Liang, H.1    Logothetis, N.K.2
  • 39
    • 0345019851 scopus 로고    scopus 로고
    • Learned parametric mixture based ICA algorithm
    • Jul
    • L. Xu, C. C. Cheung, and S.-I. Amari, "Learned parametric mixture based ICA algorithm," Neurocomputing, vol. 22, no. 1-3, pp. 69-80, Jul. 1998.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 69-80
    • Xu, L.1    Cheung, C.C.2    Amari, S.-I.3
  • 40
    • 0034244729 scopus 로고    scopus 로고
    • Flexible independent component analysis
    • Aug
    • S. Choi, A. Cichocki, and S.-I. Amari, "Flexible independent component analysis," J. VLSI Signal Process. Syst., vol. 26, no. 1-2, pp. 25-38, Aug. 2000.
    • (2000) J. VLSI Signal Process. Syst , vol.26 , Issue.1-2 , pp. 25-38
    • Choi, S.1    Cichocki, A.2    Amari, S.-I.3
  • 41
    • 0034977723 scopus 로고    scopus 로고
    • Adaptive independent component analysis of multichannel electrogastrograms
    • Mar
    • H. Liang, "Adaptive independent component analysis of multichannel electrogastrograms," Med. Eng. Phys., vol. 23, no. 2, pp. 91-97, Mar. 2001.
    • (2001) Med. Eng. Phys , vol.23 , Issue.2 , pp. 91-97
    • Liang, H.1
  • 42
    • 84863641746 scopus 로고    scopus 로고
    • A mean field approximation approach to blind source separation with Lp priors
    • Sep
    • M. M. Ichir and A. Mohammad-Djafari, "A mean field approximation approach to blind source separation with Lp priors," Eusipco, Sep. 2005.
    • (2005) Eusipco
    • Ichir, M.M.1    Mohammad-Djafari, A.2
  • 43
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
    • Oct
    • L. Xu, "Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective," Neural Inf. Process. - Lett. Rev., vol. 1, no. 1, pp. 1-52, Oct. 2003.
    • (2003) Neural Inf. Process. - Lett. Rev , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 44
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • May
    • H. Attias, "Independent factor analysis," Neural Comput., vol. 11, no. 4, pp. 803-851, May 1999.
    • (1999) Neural Comput , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 46
    • 0036952404 scopus 로고    scopus 로고
    • An EM algorithm for convolutive independent component analysis
    • Dec
    • S. Deligne and R. Gopinath, "An EM algorithm for convolutive independent component analysis," Neurocomputing, vol. 49, no. 1-4, pp. 187-211, Dec. 2002.
    • (2002) Neurocomputing , vol.49 , Issue.1-4 , pp. 187-211
    • Deligne, S.1    Gopinath, R.2
  • 47
    • 0035783805 scopus 로고    scopus 로고
    • Unsupervised learning for source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients
    • Sep
    • H. Snoussi and A. Mohammad-Djafari, "Unsupervised learning for source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients," in Neural Netw. Signal Process., Sep. 2001, pp. 293-302.
    • (2001) Neural Netw. Signal Process , pp. 293-302
    • Snoussi, H.1    Mohammad-Djafari, A.2
  • 48
    • 0030706830 scopus 로고    scopus 로고
    • Independent Component Analysis by the information-theoretic approach with mixture of densities
    • Jun
    • L. Xu, C. C. Cheung, H. H. Yang, and S.-I. Amari, "Independent Component Analysis by the information-theoretic approach with mixture of densities," in Proc. Int. Conf. Neural Netw., Jun. 1997, pp. 1821-1826.
    • (1997) Proc. Int. Conf. Neural Netw , pp. 1821-1826
    • Xu, L.1    Cheung, C.C.2    Yang, H.H.3    Amari, S.-I.4
  • 49
    • 0012671071 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach: (III) Models and algorithms for dependence reduction, data dimension reduction, ICA, and supervised learning
    • May
    • L. Xu, "Bayesian Ying-Yang system and theory as a unified statistical learning approach: (III) Models and algorithms for dependence reduction, data dimension reduction, ICA, and supervised learning," in Proc. Int. Workshop Theor. Aspects Neural Comput.: Multidiscip. Persp., May 1997, pp. 43-60.
    • (1997) Proc. Int. Workshop Theor. Aspects Neural Comput.: Multidiscip. Persp , pp. 43-60
    • Xu, L.1
  • 50
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • R. M. Neal and G. E. Hinton, M. I. Jordan, Ed, Cambridge, MA: MIT Press
    • R. M. Neal and G. E. Hinton, M. I. Jordan, Ed., "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models. Cambridge, MA: MIT Press, 1998, pp. 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
  • 52
    • 0030417779 scopus 로고    scopus 로고
    • Equivariant adaptive source separation
    • Dec
    • J.-F. Cardoso and B. H. Laheld, "Equivariant adaptive source separation," IEEE Trans. Signal Process., vol. 44, no. 12, pp. 3017-3030, Dec. 1996.
    • (1996) IEEE Trans. Signal Process , vol.44 , Issue.12 , pp. 3017-3030
    • Cardoso, J.-F.1    Laheld, B.H.2
  • 53
    • 0031271273 scopus 로고    scopus 로고
    • Blind source separation-semiparametric statistical approach
    • Nov
    • S.-I. Amari and J.-F. Cardoso, "Blind source separation-semiparametric statistical approach," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2692-2700, Nov. 1997.
    • (1997) IEEE Trans. Signal Process , vol.45 , Issue.11 , pp. 2692-2700
    • Amari, S.-I.1    Cardoso, J.-F.2
  • 54
    • 0036699905 scopus 로고    scopus 로고
    • On a new blind signal extraction algorithm: Different criteria and stability analysis
    • Aug
    • S. A. Cruces-Alvarez, A. Cichocki, and S.-I. Amari, "On a new blind signal extraction algorithm: Different criteria and stability analysis," IEEE Signal Process. Lett., vol. 9, no. 8, pp. 233-236, Aug. 2002.
    • (2002) IEEE Signal Process. Lett , vol.9 , Issue.8 , pp. 233-236
    • Cruces-Alvarez, S.A.1    Cichocki, A.2    Amari, S.-I.3
  • 55
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • Apr
    • J.-F. Cardoso, "Infomax and maximum likelihood for blind source separation," IEEE Signal Process. Lett., vol. 4, no. 4, pp. 112-114, Apr. 1997.
    • (1997) IEEE Signal Process. Lett , vol.4 , Issue.4 , pp. 112-114
    • Cardoso, J.-F.1
  • 56
    • 0003807773 scopus 로고    scopus 로고
    • 4th ed. Englewood Cliffs, NJ: Prentice-Hall
    • S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.
    • (2001) Adaptive Filter Theory
    • Haykin, S.1
  • 58
    • 0036648194 scopus 로고    scopus 로고
    • Mutual information approach to blind separation of stationary sources
    • Jul
    • D. T. Pham, "Mutual information approach to blind separation of stationary sources," IEEE Trans. Inf. Theory, vol. 48, no. 7, pp. 1935-1946, Jul. 2002.
    • (2002) IEEE Trans. Inf. Theory , vol.48 , Issue.7 , pp. 1935-1946
    • Pham, D.T.1
  • 59
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space, and generalized APT financial analysis
    • Jul
    • L. Xu, "BYY harmony learning, independent state space, and generalized APT financial analysis," IEEE Trans. Neural Netw., vol. 12, no. 4, pp. 822-849, Jul. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 60
    • 13244259195 scopus 로고    scopus 로고
    • Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias
    • Feb
    • F. Castells, J. J. Rieta, J. Millet, and V. Zarzoso, "Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias," IEEE Trans. Biomed. Eng., vol. 52, no. 2, pp. 258-267, Feb. 2005.
    • (2005) IEEE Trans. Biomed. Eng , vol.52 , Issue.2 , pp. 258-267
    • Castells, F.1    Rieta, J.J.2    Millet, J.3    Zarzoso, V.4
  • 61
    • 0041709586 scopus 로고    scopus 로고
    • Independent component analysis for time-dependent stochastic processes
    • Sep
    • A. Hyvarinen, "Independent component analysis for time-dependent stochastic processes," in Proc. Int. Conf. Artif. Neural Netw., Sep. 1998, pp. 541-546.
    • (1998) Proc. Int. Conf. Artif. Neural Netw , pp. 541-546
    • Hyvarinen, A.1
  • 62
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • May
    • A. Hyvarinen, "Fast and robust fixed-point algorithms for independent component analysis," IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626-634, May 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.3 , pp. 626-634
    • Hyvarinen, A.1
  • 63
    • 0025665611 scopus 로고
    • An extended fourth order blind identification algorithm in spatially correlated noise
    • Apr
    • V. C. Soon, L. Tong, Y. F. Huang, and R. Liu, "An extended fourth order blind identification algorithm in spatially correlated noise," in Proc. Int. Conf. Acoust. Speech Signal Process., Apr. 1990, pp. 1365-1368.
    • (1990) Proc. Int. Conf. Acoust. Speech Signal Process , pp. 1365-1368
    • Soon, V.C.1    Tong, L.2    Huang, Y.F.3    Liu, R.4
  • 64
    • 0026155673 scopus 로고
    • Indeterminacy and identifiability of blind identification
    • May
    • L. Tong, R.-W. Liu, V. C. Soon, and Y.-F. Huang, "Indeterminacy and identifiability of blind identification," IEEE Trans. Circuits Syst. vol. 38, no. 5, pp. 499-509, May 1991.
    • (1991) IEEE Trans. Circuits Syst , vol.38 , Issue.5 , pp. 499-509
    • Tong, L.1    Liu, R.-W.2    Soon, V.C.3    Huang, Y.-F.4
  • 65
    • 8344236020 scopus 로고    scopus 로고
    • Blind source separation via generalized eigenvalue decomposition
    • Dec
    • L. Parra and P. Sajda, "Blind source separation via generalized eigenvalue decomposition," J. Mach. Learn. Res., vol. 4, pp. 1261-1269, Dec. 2003.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 1261-1269
    • Parra, L.1    Sajda, P.2
  • 66
    • 0002845302 scopus 로고    scopus 로고
    • TDSEP - An efficient algorithm for blind separation using time structure
    • Sep
    • A. Ziehe and K.-R. Muller, "TDSEP - An efficient algorithm for blind separation using time structure," in Proc. Int. Conf. Artif. Neural Netw., Sep. 1998, pp. 675-680.
    • (1998) Proc. Int. Conf. Artif. Neural Netw , pp. 675-680
    • Ziehe, A.1    Muller, K.-R.2
  • 68
    • 0027812550 scopus 로고
    • Blind beamforming for non-Gaussian signals
    • Dec
    • J. F. Cardoso and A. Souloumiac, "Blind beamforming for non-Gaussian signals," Inst. Electr. Eng. Proc. - F, vol. 140, no. 6, pp. 362-370, Dec. 1993.
    • (1993) Inst. Electr. Eng. Proc. - F , vol.140 , Issue.6 , pp. 362-370
    • Cardoso, J.F.1    Souloumiac, A.2
  • 72
    • 84899022236 scopus 로고    scopus 로고
    • Neural learning in structured parameter spaces - Natural Riemannian gradient
    • Dec
    • S. Amari, "Neural learning in structured parameter spaces - Natural Riemannian gradient," Adv. Neural Inf. Process. Syst., pp. 127-133, Dec. 1996.
    • (1996) Adv. Neural Inf. Process. Syst , pp. 127-133
    • Amari, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.