메뉴 건너뛰기




Volumn 17, Issue , 2008, Pages 88-101

The reflexive re-nonnegative definite solution to a quaternion matrix equation

Author keywords

Quaternion matrix equation; Re nonnegative definite matrix; Reflexive matrix; Reflexive re nonnegative definite matrix

Indexed keywords


EID: 40849138243     PISSN: None     EISSN: 10813810     Source Type: Journal    
DOI: 10.13001/1081-3810.1251     Document Type: Article
Times cited : (74)

References (33)
  • 1
    • 0004220560 scopus 로고
    • Spring-Verlag Inc, New York
    • T. W. Hungerford. Algebra. Spring-Verlag Inc., New York, 1980.
    • (1980) Algebra
    • Hungerford, T.W.1
  • 2
    • 0031540156 scopus 로고    scopus 로고
    • Quaternions and matrices of quaternions
    • F. Zhang. Quaternions and matrices of quaternions, Linear Algebra Appl., 251:21-57, 1997.
    • (1997) Linear Algebra Appl , vol.251 , pp. 21-57
    • Zhang, F.1
  • 3
    • 0038763665 scopus 로고
    • Hermitian and nonnegative definite solutions of linear matrix equations
    • C. G. Khatri and S. K. Mitra. Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 31:579-585, 1976.
    • (1976) SIAM J. Appl. Math , vol.31 , pp. 579-585
    • Khatri, C.G.1    Mitra, S.K.2
  • 4
    • 0038425666 scopus 로고
    • Nonnegative definite and positive definite solutions to the matrix equation AXA* = B
    • J. K. Baksalary. Nonnegative definite and positive definite solutions to the matrix equation AXA* = B. Linear Multilinear Algebra, 16:133-139, 1984.
    • (1984) Linear Multilinear Algebra , vol.16 , pp. 133-139
    • Baksalary, J.K.1
  • 5
    • 18144433136 scopus 로고    scopus 로고
    • Nonnegative-define and positive solutions to the matrix equation AXA* = B - revisited
    • J. Groß. Nonnegative-define and positive solutions to the matrix equation AXA* = B - revisited. Linear Algebra Appl., 321:123-129, 2000.
    • (2000) Linear Algebra Appl , vol.321 , pp. 123-129
    • Groß, J.1
  • 6
    • 0038638353 scopus 로고    scopus 로고
    • The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B
    • X. Zhang and M. Y. Cheng. The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B. Linear Algebra Appl., 370:163-174, 2003.
    • (2003) Linear Algebra Appl , vol.370 , pp. 163-174
    • Zhang, X.1    Cheng, M.Y.2
  • 7
    • 0037749341 scopus 로고    scopus 로고
    • Linear matrix equations from an inverse problem of vibration theory
    • H. Dai and P. Lancaster. Linear matrix equations from an inverse problem of vibration theory. Linear Algebra Appl., 246:31-47, 1996.
    • (1996) Linear Algebra Appl , vol.246 , pp. 31-47
    • Dai, H.1    Lancaster, P.2
  • 8
    • 0346044230 scopus 로고    scopus 로고
    • The constrained solutions of two matrix equations
    • A. P. Liao and Z. Z. Bai. The constrained solutions of two matrix equations. Acta Math. Sinica, English Series, 18(4):671-678, 2002.
    • (2002) Acta Math. Sinica, English Series , vol.18 , Issue.4 , pp. 671-678
    • Liao, A.P.1    Bai, Z.Z.2
  • 10
    • 0040731746 scopus 로고
    • The SAS domain decomposition method for structural analysis
    • Center for Supercomputing Research and Development, University of Illinois, Urbana, IL
    • H. C. Chen, The SAS domain decomposition method for structural analysis, CSRD Tech. report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988.
    • (1988) CSRD Tech. report , vol.754
    • Chen, H.C.1
  • 11
    • 0030542757 scopus 로고    scopus 로고
    • The Re-nonnegative definite solution to the matrix inverse problem AX = B
    • L. Wu and B. Cain. The Re-nonnegative definite solution to the matrix inverse problem AX = B. Linear Algebra Appl., 236:137-146, 1996.
    • (1996) Linear Algebra Appl , vol.236 , pp. 137-146
    • Wu, L.1    Cain, B.2
  • 13
    • 0033431403 scopus 로고    scopus 로고
    • Littlewood's algorithm and quaternion matrices
    • D. I. Merino and V. Sergeichuk. Littlewood's algorithm and quaternion matrices, Linear Algebra Appl., 298:193-208, 1999.
    • (1999) Linear Algebra Appl , vol.298 , pp. 193-208
    • Merino, D.I.1    Sergeichuk, V.2
  • 19
    • 2642566022 scopus 로고    scopus 로고
    • Singular value decomposition of matrices of Quaternions: A New Tool for Vector-Sensor Signal Processing
    • N. L. Bihan and J. Mars. Singular value decomposition of matrices of Quaternions: A New Tool for Vector-Sensor Signal Processing, Signal Processing 84(7):1177-1199, 2004.
    • (2004) Signal Processing , vol.84 , Issue.7 , pp. 1177-1199
    • Bihan, N.L.1    Mars, J.2
  • 20
    • 18444409047 scopus 로고    scopus 로고
    • Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations
    • Q. W. Wang. Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl., 49(5/6):641-650, 2005.
    • (2005) Comput. Math. Appl , vol.49 , Issue.5-6 , pp. 641-650
    • Wang, Q.W.1
  • 21
    • 18444385093 scopus 로고    scopus 로고
    • The general solution to a system of real quaternion matrix equations
    • Q. W. Wang. The general solution to a system of real quaternion matrix equations. Comput. Math. Appl., 49(5/6):665-675, 2005.
    • (2005) Comput. Math. Appl , vol.49 , Issue.5-6 , pp. 665-675
    • Wang, Q.W.1
  • 22
    • 33750845405 scopus 로고    scopus 로고
    • Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations
    • S. J. Sangwine and N. L. Bihan. Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations. Appl. Math. Comput., 182(1):727-738, 2006.
    • (2006) Appl. Math. Comput , vol.182 , Issue.1 , pp. 727-738
    • Sangwine, S.J.1    Bihan, N.L.2
  • 23
    • 2342617534 scopus 로고    scopus 로고
    • A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity
    • Q. W. Wang. A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl., 384:43-54, 2004.
    • (2004) Linear Algebra Appl , vol.384 , pp. 43-54
    • Wang, Q.W.1
  • 24
    • 33751543935 scopus 로고    scopus 로고
    • Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications
    • Q. W. Wang, Z. C. Wu, and C. Y. Lin. Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications. Appl. Math. Comput., 182:1755-1764, 2006.
    • (2006) Appl. Math. Comput , vol.182 , pp. 1755-1764
    • Wang, Q.W.1    Wu, Z.C.2    Lin, C.Y.3
  • 25
    • 34249037166 scopus 로고    scopus 로고
    • Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application
    • Q. W. Wang, G. J. Song, and C. Y. Lin. Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application. Appl. Math. Comput., 189:1517-1532, 2007.
    • (2007) Appl. Math. Comput , vol.189 , pp. 1517-1532
    • Wang, Q.W.1    Song, G.J.2    Lin, C.Y.3
  • 26
    • 37349019676 scopus 로고    scopus 로고
    • Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications
    • Q. W. Wang, S.W. Yu, and C.Y. Lin. Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications. Appl. Math. Comput., 195:733-744, 2008.
    • (2008) Appl. Math. Comput , vol.195 , pp. 733-744
    • Wang, Q.W.1    Yu, S.W.2    Lin, C.Y.3
  • 27
    • 34247899055 scopus 로고    scopus 로고
    • Geršgorin type theorems for quaternionic matrices
    • F. Zhang. Geršgorin type theorems for quaternionic matrices. Linear Algebra Appl., 424:139-153, 2007.
    • (2007) Linear Algebra Appl , vol.424 , pp. 139-153
    • Zhang, F.1
  • 28
    • 0014476598 scopus 로고
    • Conditions for positive and nonnegative definiteness in terms of pseudoinverses
    • A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM J. Appl. Math., 17:434-440, 1969.
    • (1969) SIAM J. Appl. Math , vol.17 , pp. 434-440
    • Albert, A.1
  • 29
    • 37349037808 scopus 로고    scopus 로고
    • P-(skew)symmetric common solutions to a pair of quaternion matrix equations
    • Q. W. Wang, H. X. Chang, and C. Y. Lin. P-(skew)symmetric common solutions to a pair of quaternion matrix equations. Appl. Math. Comput., 195:721-732, 2008.
    • (2008) Appl. Math. Comput , vol.195 , pp. 721-732
    • Wang, Q.W.1    Chang, H.X.2    Lin, C.Y.3
  • 30
    • 2342639118 scopus 로고    scopus 로고
    • Pairwise matrix decompositions and matrix equations over an arbitrary skew field
    • Q. W. Wang. Pairwise matrix decompositions and matrix equations over an arbitrary skew field. Acta Math. Sinica (Chin. Ser.), 39(3):396-403, 1996.
    • (1996) Acta Math. Sinica (Chin. Ser.) , vol.39 , Issue.3 , pp. 396-403
    • Wang, Q.W.1
  • 31
    • 0016926423 scopus 로고
    • Generalizing the singular value decomposition
    • C. F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13:76-83, 1976.
    • (1976) SIAM J. Numer. Anal , vol.13 , pp. 76-83
    • Van Loan, C.F.1
  • 32
    • 0001129014 scopus 로고
    • Towards a generalized singular value decomposition
    • C. C. Paige and M. A. Saunders. Towards a generalized singular value decomposition. SIAM J. Numer. Anal., 18:398-405, 1981.
    • (1981) SIAM J. Numer. Anal , vol.18 , pp. 398-405
    • Paige, C.C.1    Saunders, M.A.2
  • 33
    • 34250230826 scopus 로고
    • Computing the CS-decomposition of a partitioned orthogonal matrix
    • G. W. Stewart. Computing the CS-decomposition of a partitioned orthogonal matrix. Numer. Math., 40:297-306, 1982.
    • (1982) Numer. Math , vol.40 , pp. 297-306
    • Stewart, G.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.