-
1
-
-
38249037519
-
On the matrix equation AX = B with applications to the generators of controllability matrix
-
Uhlig F. On the matrix equation AX = B with applications to the generators of controllability matrix. Linear Algebra Appl. 85 (1987) 203-209
-
(1987)
Linear Algebra Appl.
, vol.85
, pp. 203-209
-
-
Uhlig, F.1
-
2
-
-
0011307973
-
Fixed rank solutions of linear matrix equations
-
Mitra S.K. Fixed rank solutions of linear matrix equations. Sankhya Ser. A 35 (1972) 387-392
-
(1972)
Sankhya Ser. A
, vol.35
, pp. 387-392
-
-
Mitra, S.K.1
-
3
-
-
0038586505
-
Ranks of Solutions of the matrix equation AXB = C
-
Tian Y. Ranks of Solutions of the matrix equation AXB = C. Linear Multilinear Algebra 51 2 (2003) 111-125
-
(2003)
Linear Multilinear Algebra
, vol.51
, Issue.2
, pp. 111-125
-
-
Tian, Y.1
-
4
-
-
0037892145
-
The matrix equations AX = C, XB = D
-
Mitra S.K. The matrix equations AX = C, XB = D. Linear Algebra Appl. 59 (1984) 171-181
-
(1984)
Linear Algebra Appl.
, vol.59
, pp. 171-181
-
-
Mitra, S.K.1
-
5
-
-
44949289177
-
2 and a programming problem
-
2 and a programming problem. Linear Algebra Appl. 131 (1990) 107-123
-
(1990)
Linear Algebra Appl.
, vol.131
, pp. 107-123
-
-
Mitra, S.K.1
-
6
-
-
0036622703
-
The minimal rank completion of a 3 × 3 partial block matrix
-
Tian Y. The minimal rank completion of a 3 × 3 partial block matrix. Linear Multilinear Algebra 50 2 (2002) 125-131
-
(2002)
Linear Multilinear Algebra
, vol.50
, Issue.2
, pp. 125-131
-
-
Tian, Y.1
-
7
-
-
0038568318
-
Upper and lower bounds for ranks of matrix expressions using generalized inverses
-
Tian Y. Upper and lower bounds for ranks of matrix expressions using generalized inverses. Linear Algebra Appl. 355 (2002) 187-214
-
(2002)
Linear Algebra Appl.
, vol.355
, pp. 187-214
-
-
Tian, Y.1
-
8
-
-
0037892144
-
The maximal and minimal ranks of some expressions of generalized inverses of matrices
-
Tian Y. The maximal and minimal ranks of some expressions of generalized inverses of matrices. Southeast Asian Bull. Math. 25 (2002) 745-755
-
(2002)
Southeast Asian Bull. Math.
, vol.25
, pp. 745-755
-
-
Tian, Y.1
-
9
-
-
0034359185
-
Completing block matrices with maximal and minimal ranks
-
Tian Y. Completing block matrices with maximal and minimal ranks. Linear Algebra Appl. 321 (2000) 327-345
-
(2000)
Linear Algebra Appl.
, vol.321
, pp. 327-345
-
-
Tian, Y.1
-
10
-
-
3042608921
-
The minimal rank of the matrix expression A - BX - YC
-
Tian Y. The minimal rank of the matrix expression A - BX - YC. Missouri J. Math. Sci. 14 1 (2002) 40-48
-
(2002)
Missouri J. Math. Sci.
, vol.14
, Issue.1
, pp. 40-48
-
-
Tian, Y.1
-
11
-
-
3042645371
-
The maximal and minimal ranks of A - BXC with applications
-
Tian Y., and Cheng S. The maximal and minimal ranks of A - BXC with applications. New York J. Math. 9 (2003) 345-362
-
(2003)
New York J. Math.
, vol.9
, pp. 345-362
-
-
Tian, Y.1
Cheng, S.2
-
12
-
-
2342651438
-
More on maximal and minimal ranks of Schur complements with applications
-
Tian Y. More on maximal and minimal ranks of Schur complements with applications. Appl. Math. Comput. 152 3 (2004) 675-692
-
(2004)
Appl. Math. Comput.
, vol.152
, Issue.3
, pp. 675-692
-
-
Tian, Y.1
-
13
-
-
17444403238
-
A system of four matrix equations over von Neumann regular rings and its applications
-
Wang Q.W. A system of four matrix equations over von Neumann regular rings and its applications. Acta Math. Sinica 21 2 (2005) 323-334
-
(2005)
Acta Math. Sinica
, vol.21
, Issue.2
, pp. 323-334
-
-
Wang, Q.W.1
-
14
-
-
84859529472
-
Equalities and inequalities for ranks of matrices
-
Marsaglia G., and Styan G.P.H. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2 (1974) 269-292
-
(1974)
Linear Multilinear Algebra
, vol.2
, pp. 269-292
-
-
Marsaglia, G.1
Styan, G.P.H.2
-
16
-
-
0031540156
-
Quaternions and matrices of quaternions
-
Zhang F. Quaternions and matrices of quaternions. Linear Algebra Appl. 251 (1997) 21-57
-
(1997)
Linear Algebra Appl.
, vol.251
, pp. 21-57
-
-
Zhang, F.1
-
17
-
-
0040814344
-
Right eigenvalues for quaternionic matrices: a topological approach
-
Baker A. Right eigenvalues for quaternionic matrices: a topological approach. Linear Algebra Appl. 286 (1999) 303-309
-
(1999)
Linear Algebra Appl.
, vol.286
, pp. 303-309
-
-
Baker, A.1
-
18
-
-
0033431403
-
Littlewood's algorithm and quaternion matrices
-
Merino D.I., and Sergeichuk V. Littlewood's algorithm and quaternion matrices. Linear Algebra Appl. 298 (1999) 193-208
-
(1999)
Linear Algebra Appl.
, vol.298
, pp. 193-208
-
-
Merino, D.I.1
Sergeichuk, V.2
-
19
-
-
0034696708
-
Right eigenvalue equation in quaternionic quantum mechanics
-
De Leo S., and Scolarici G. Right eigenvalue equation in quaternionic quantum mechanics. J. Phys. A 33 (2000) 2971-2995
-
(2000)
J. Phys. A
, vol.33
, pp. 2971-2995
-
-
De Leo, S.1
Scolarici, G.2
-
22
-
-
2642566022
-
Singular value decomposition of matrices of quaternions: a new tool for vector-sensor signal processing
-
LE Bihan N., and Mars J. Singular value decomposition of matrices of quaternions: a new tool for vector-sensor signal processing. Signal Process. 84 7 (2004) 1177-1199
-
(2004)
Signal Process.
, vol.84
, Issue.7
, pp. 1177-1199
-
-
LE Bihan, N.1
Mars, J.2
-
23
-
-
0344666580
-
-
N. LE Bihan, S.J. Sangwine, Quaternion principal component analysis of color images, in: IEEE International Conference on Image Processing (ICIP), Barcelona, Spain, September 2003.
-
-
-
-
24
-
-
33751539332
-
-
N. LE Bihan, S.J. Sangwine, Color image decomposition using quaternion singular value decomposition, in: IEEE International conference on Visual Information Engineering (VIE), Guildford, UK, July 2003.
-
-
-
-
26
-
-
0343621610
-
Common solutions to the linear matrix equations AX = B, XC = D, and EXF = G
-
Bhimasankaram P. Common solutions to the linear matrix equations AX = B, XC = D, and EXF = G. Sankhya Ser. A 38 (1976) 404-409
-
(1976)
Sankhya Ser. A
, vol.38
, pp. 404-409
-
-
Bhimasankaram, P.1
-
27
-
-
33746067563
-
New solvable conditions and a new expression of the general solution to a system of linear matrix equations over an arbitrary division ring
-
Lin C.Y., and Wang Q.W. New solvable conditions and a new expression of the general solution to a system of linear matrix equations over an arbitrary division ring. Southeast Asian Bull. Math. 29 5 (2005) 755-762
-
(2005)
Southeast Asian Bull. Math.
, vol.29
, Issue.5
, pp. 755-762
-
-
Lin, C.Y.1
Wang, Q.W.2
-
28
-
-
33751527217
-
The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring
-
Lin C.Y., and Wang Q.W. The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring. Math. Sci. Res. J. 10 3 (2006) 57-65
-
(2006)
Math. Sci. Res. J.
, vol.10
, Issue.3
, pp. 57-65
-
-
Lin, C.Y.1
Wang, Q.W.2
-
29
-
-
18444385093
-
The general solution to a system of real quaternion matrix equations
-
Wang Q.W. The general solution to a system of real quaternion matrix equations. Comput. Math. Appl. 49 (2005) 665-675
-
(2005)
Comput. Math. Appl.
, vol.49
, pp. 665-675
-
-
Wang, Q.W.1
-
30
-
-
18444409047
-
Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations
-
Wang Q.W. Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl. 49 (2005) 641-650
-
(2005)
Comput. Math. Appl.
, vol.49
, pp. 641-650
-
-
Wang, Q.W.1
-
31
-
-
10444285292
-
Solving a kind of restricted matrix equations and Cramer rule
-
Wang G., and Xu Z. Solving a kind of restricted matrix equations and Cramer rule. Appl. Math. Comput. 162 (2005) 329-338
-
(2005)
Appl. Math. Comput.
, vol.162
, pp. 329-338
-
-
Wang, G.1
Xu, Z.2
-
32
-
-
2342617534
-
A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity
-
Wang Q.W. A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl. 384 (2004) 43-54
-
(2004)
Linear Algebra Appl.
, vol.384
, pp. 43-54
-
-
Wang, Q.W.1
-
33
-
-
0010749217
-
The matrix equation AXB + CYD = E over a principal ideal domain
-
O{combining double acute accent}zgu{combining double acute accent}ler A.B. The matrix equation AXB + CYD = E over a principal ideal domain. SIAM J. Matrix Anal. Appl. 12 (1991) 581-591
-
(1991)
SIAM J. Matrix Anal. Appl.
, vol.12
, pp. 581-591
-
-
Ozguler, A.B.1
|