메뉴 건너뛰기




Volumn 24, Issue 2, 2008, Pages 687-698

A numerical method for one-dimensional nonlinear sine-gordon equation using collocation and radial basis functions

Author keywords

Collocation; One dimensional undamped Sine Gordon equation; Radial basis function (RBF); Thin plate splines (TPS)

Indexed keywords


EID: 40749131187     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20289     Document Type: Article
Times cited : (82)

References (40)
  • 1
    • 50549175042 scopus 로고
    • A model unified field equation
    • 1 J. K. Perring and T. H. Skyrme, A model unified field equation, Nucl Phys 31 ( 1962), 550–555.
    • (1962) Nucl Phys , vol.31 , pp. 550-555
    • Perring, J.K.1    Skyrme, T.H.2
  • 2
    • 25144450080 scopus 로고    scopus 로고
    • The tanh method: exact solutions of the sine‐Gordon and the sinh‐Gordon equations
    • 2 A. M. Wazwaz, The tanh method: exact solutions of the sine‐Gordon and the sinh‐Gordon equations, Appl Math Comput 167 ( 2005), 1196–1210.
    • (2005) Appl Math Comput , vol.167 , pp. 1196-1210
    • Wazwaz, A.M.1
  • 3
    • 20444416713 scopus 로고    scopus 로고
    • New quasi‐periodic waves of the (2 + 1)‐dimensional sine‐Gordon system
    • 3 H. C. Hu and S. Y. Lou, New quasi‐periodic waves of the (2 + 1)‐dimensional sine‐Gordon system, Phys Lett A 341 ( 2005), 422–426.
    • (2005) Phys Lett A , vol.341 , pp. 422-426
    • Hu, H.C.1    Lou, S.Y.2
  • 4
    • 56149120397 scopus 로고
    • Exact three‐soliton solution of the two‐dimensional sine‐Gordon equation
    • 4 R. Hirota, Exact three‐soliton solution of the two‐dimensional sine‐Gordon equation, J Phys Soc Jpn 35 ( 1973), 15–66.
    • (1973) J Phys Soc Jpn , vol.35 , pp. 15-66
    • Hirota, R.1
  • 5
    • 0010501637 scopus 로고
    • Particular solutions of the sine‐Gordon equation in 2 + 1 dimensions
    • 5 J. Zagrodzinsky, Particular solutions of the sine‐Gordon equation in 2 + 1 dimensions, Phys Lett ( 1979), 284–286.
    • (1979) Phys Lett , pp. 284-286
    • Zagrodzinsky, J.1
  • 6
    • 0042839647 scopus 로고
    • New exact solutions of the classical sine‐Gordon equation in 2 + 1 and 3 + 1 dimensions
    • 6 G. Leibbrandt, New exact solutions of the classical sine‐Gordon equation in 2 + 1 and 3 + 1 dimensions, Phys Rev Lett 41 ( 1978), 435–438.
    • (1978) Phys Rev Lett , vol.41 , pp. 435-438
    • Leibbrandt, G.1
  • 7
    • 0010502036 scopus 로고
    • Kadomtsev‐Petviashvili and two‐dimensional sine‐Gordon equations: reduction to Painleve transcendents
    • 7 P. Kaliappan and M. Lakshmanan, Kadomtsev‐Petviashvili and two‐dimensional sine‐Gordon equations: reduction to Painleve transcendents, J Phys A 12 ( 1979), L249–L252.
    • (1979) J Phys A , vol.12 , pp. L249-L252
    • Kaliappan, P.1    Lakshmanan, M.2
  • 9
    • 0346688073 scopus 로고    scopus 로고
    • Modeling light bullets with the two‐dimensional sine‐Gordon equation
    • 9 J. X. Xin, Modeling light bullets with the two‐dimensional sine‐Gordon equation, Phys D 135 ( 2000), 345–368.
    • (2000) Phys D , vol.135 , pp. 345-368
    • Xin, J.X.1
  • 10
    • 0001329612 scopus 로고
    • Numerical solutions of 2 + 1 dimensional Sine‐Gordon solitons
    • 10 P. L. Christiansen and P. S. Lomdahl, Numerical solutions of 2 + 1 dimensional Sine‐Gordon solitons, Phys 2D ( 1981), 482–494.
    • (1981) Phys 2D , pp. 482-494
    • Christiansen, P.L.1    Lomdahl, P.S.2
  • 11
    • 0026124767 scopus 로고
    • Finite element approximation to two‐dimensional Sine‐Gordon solutions
    • 11 J. Argyris, M. Haase, and J. C. Heinrich, Finite element approximation to two‐dimensional Sine‐Gordon solutions, Comput Methods Appl Mech Eng 86 ( 1991), 1–26.
    • (1991) Comput Methods Appl Mech Eng , vol.86 , pp. 1-26
    • Argyris, J.1    Haase, M.2    Heinrich, J.C.3
  • 12
    • 18144406135 scopus 로고    scopus 로고
    • Numerical simulation of two‐dimensional Sine‐Gordon solitons via a split cosine scheme
    • 12 Q. Sheng, A. Q. M. Khaliq, and D. A. Voss, Numerical simulation of two‐dimensional Sine‐Gordon solitons via a split cosine scheme, Math Comput Simul 68 ( 2005), 355–373.
    • (2005) Math Comput Simul , vol.68 , pp. 355-373
    • Sheng, Q.1    Khaliq, A.Q.M.2    Voss, D.A.3
  • 13
    • 33847382284 scopus 로고    scopus 로고
    • An explicit numerical scheme for the Sine‐Gordon equation in 2 + 1 dimensions
    • 13 A. G. Bratsos, An explicit numerical scheme for the Sine‐Gordon equation in 2 + 1 dimensions, Appl Numer Anal Comput Math 2 ( 2005), 189–211.
    • (2005) Appl Numer Anal Comput Math , vol.2 , pp. 189-211
    • Bratsos, A.G.1
  • 14
    • 0016101698 scopus 로고
    • Numerical analysis of vortex motion on Josephson structures
    • 14 K. Nakajima, Y. Onodera, T. Nakamura, and R. Sato, Numerical analysis of vortex motion on Josephson structures, J Appl Phys 45 ( 1974), 4095–4099.
    • (1974) J Appl Phys , vol.45 , pp. 4095-4099
    • Nakajima, K.1    Onodera, Y.2    Nakamura, T.3    Sato, R.4
  • 15
    • 42749107019 scopus 로고    scopus 로고
    • Kink propagation and trapping in a two‐dimensional curved Josephson junction
    • 15 C. Gorria, Y. B. Gaididei, M. P. Soerensen, P. L. Christiansen, and J. G. Caputo, Kink propagation and trapping in a two‐dimensional curved Josephson junction, Phys Rev B 69 ( 2004), 134506 (1–10).
    • (2004) Phys Rev B , vol.69 , pp. 134506 (1-10)
    • Gorria, C.1    Gaididei, Y.B.2    Soerensen, M.P.3    Christiansen, P.L.4    Caputo, J.G.5
  • 16
    • 34249277434 scopus 로고    scopus 로고
    • The solution of the two‐dimensional sine‐Gordon equation using the method of lines
    • 16 A. G. Bratsos, The solution of the two‐dimensional sine‐Gordon equation using the method of lines, J Comput Appl Math 206 ( 2007), 251–277.
    • (2007) J Comput Appl Math , vol.206 , pp. 251-277
    • Bratsos, A.G.1
  • 17
    • 0029332275 scopus 로고
    • Numerical solutions of a damped sine‐Gordon equation in two space variables
    • 17 K. Djidjeli, W. G. Price, and E. H. Twizell, Numerical solutions of a damped sine‐Gordon equation in two space variables, J Eng Math 29 ( 1995), 347–369.
    • (1995) J Eng Math , vol.29 , pp. 347-369
    • Djidjeli, K.1    Price, W.G.2    Twizell, E.H.3
  • 18
    • 0001167255 scopus 로고
    • Numerical homoclinic instabilities in the sine‐Gordon equation
    • 18 B. M. Herbst and M. J. Ablowitz, Numerical homoclinic instabilities in the sine‐Gordon equation, Quaest Math 15 ( 1992), 345–363.
    • (1992) Quaest Math , vol.15 , pp. 345-363
    • Herbst, B.M.1    Ablowitz, M.J.2
  • 19
    • 16144366227 scopus 로고    scopus 로고
    • Constance on the numerical solution of the sine‐Gordon equation. I. Integrable discretizations and homoclinic manifolds
    • 19 M. J. Ablowitz, B. M. Herbst, and C. Schober, Constance on the numerical solution of the sine‐Gordon equation. I. Integrable discretizations and homoclinic manifolds, J Comput Phys 126 ( 1996), 299–314.
    • (1996) J Comput Phys , vol.126 , pp. 299-314
    • Ablowitz, M.J.1    Herbst, B.M.2    Schober, C.3
  • 20
    • 0347945239 scopus 로고    scopus 로고
    • Discrete singular convolution for the sine‐Gordon equation
    • 20 G. W. Wei, Discrete singular convolution for the sine‐Gordon equation, Physica D 137 ( 2000), 247–259.
    • (2000) Physica D , vol.137 , pp. 247-259
    • Wei, G.W.1
  • 22
    • 11144275388 scopus 로고    scopus 로고
    • On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
    • 22 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Equations 21 ( 2005), 24–40.
    • (2005) Numer Methods Partial Differential Equations , vol.21 , pp. 24-40
    • Dehghan, M.1
  • 23
    • 32644435892 scopus 로고    scopus 로고
    • Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
    • 23 M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul 71 ( 2006), 16–30.
    • (2006) Math Comput Simul , vol.71 , pp. 16-30
    • Dehghan, M.1
  • 24
    • 33749559910 scopus 로고    scopus 로고
    • The one‐dimensional heat equation subject to a boundary integral specification, Chaos
    • 24 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons Fractals 32 ( 2007), 661–675.
    • (2007) Solitons Fractals , vol.32 , pp. 661-675
    • Dehghan, M.1
  • 25
    • 33645276878 scopus 로고    scopus 로고
    • A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
    • 25 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Differential Equations 22 ( 2006), 220–257.
    • (2006) Numer Methods Partial Differential Equations , vol.22 , pp. 220-257
    • Dehghan, M.1
  • 26
    • 33645862277 scopus 로고    scopus 로고
    • A local discontinuous Galerkin method for the Korteweg de Vries equation with boundary effect
    • 26 H. Liu and J. Yan, A local discontinuous Galerkin method for the Korteweg de Vries equation with boundary effect, J Comput Phys 215 ( 2005), 197–218.
    • (2005) J Comput Phys , vol.215 , pp. 197-218
    • Liu, H.1    Yan, J.2
  • 27
    • 0025229330 scopus 로고
    • Multiquadrics I. A scattered data approximation scheme with applications to computational fluid dynamics
    • 27 E. J. Kansa, Multiquadrics I. A scattered data approximation scheme with applications to computational fluid dynamics, Comput Math Appl 19 ( 1990), 127–145.
    • (1990) Comput Math Appl , vol.19 , pp. 127-145
    • Kansa, E.J.1
  • 28
    • 0025210711 scopus 로고
    • Multiquadrics, II. A scattered data approximation scheme with applications to computational fluid dynamics
    • 28 E. J. Kansa, Multiquadrics, II. A scattered data approximation scheme with applications to computational fluid dynamics, Comput Math Appl 19 ( 1990), 147–161.
    • (1990) Comput Math Appl , vol.19 , pp. 147-161
    • Kansa, E.J.1
  • 29
    • 0002879831 scopus 로고    scopus 로고
    • An efficient numerical scheme for Burgers equation
    • 29 Y. C. Hon and X. Z. Mao, An efficient numerical scheme for Burgers equation, Appl Math Comput 95 ( 1998), 37–50.
    • (1998) Appl Math Comput , vol.95 , pp. 37-50
    • Hon, Y.C.1    Mao, X.Z.2
  • 30
    • 0033133932 scopus 로고    scopus 로고
    • Multiquadric solution for shallow water equations
    • 30 Y. C. Hon, K. F. Cheung, X. Z. Mao, and E. J. Kansa, Multiquadric solution for shallow water equations, ASCE J Hydraulic Eng 125 ( 1999), 524–533.
    • (1999) ASCE J Hydraulic Eng , vol.125 , pp. 524-533
    • Hon, Y.C.1    Cheung, K.F.2    Mao, X.Z.3    Kansa, E.J.4
  • 31
    • 0032529187 scopus 로고
    • A numerical method for heat transfer problem using collocation and radial basis functions
    • 31 M. Zerroukat, H. Power, and C. S. Chen, A numerical method for heat transfer problem using collocation and radial basis functions, Int J Numer Methods Eng 42 ( 1992), 1263–1278.
    • (1992) Int J Numer Methods Eng , vol.42 , pp. 1263-1278
    • Zerroukat, M.1    Power, H.2    Chen, C.S.3
  • 32
    • 0001291977 scopus 로고    scopus 로고
    • A radial basis function method for solving options pricing model
    • 32 Y. C. Hon and X. Z. Mao, A radial basis function method for solving options pricing model, Financial Eng 8 ( 1999), 31–49.
    • (1999) Financial Eng , vol.8 , pp. 31-49
    • Hon, Y.C.1    Mao, X.Z.2
  • 33
    • 0001764927 scopus 로고    scopus 로고
    • On the use of boundary conditions for variational formulations arising in financial mathematics
    • 33 M. Marcozzi, S. Choi, and C. S. Chen, On the use of boundary conditions for variational formulations arising in financial mathematics, Appl Math Comput 124 ( 2001), 197–214.
    • (2001) Appl Math Comput , vol.124 , pp. 197-214
    • Marcozzi, M.1    Choi, S.2    Chen, C.S.3
  • 34
    • 0002434097 scopus 로고    scopus 로고
    • Solving partial differential equations by collocation with radial basis functions
    • 34 G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, A. Le Méhauté, C. Rabut, and L. L. Schumaker, editors, Surface fitting and multiresolution methods, Vanderbilt University Press, Nashville, TN, 1997.
    • (1997)
    • Fasshauer, G.E.1
  • 35
    • 0038577058 scopus 로고    scopus 로고
    • The decomposition method for studying the Klein–Gordon equation
    • 35 S. M. El‐Sayed, The decomposition method for studying the Klein–Gordon equation, Chaos Solitons Fractals 18 ( 2003), 1025–1030.
    • (2003) Chaos Solitons Fractals , vol.18 , pp. 1025-1030
    • El‐Sayed, S.M.1
  • 36
    • 20444496902 scopus 로고    scopus 로고
    • High‐order multi‐symplectic schemes for the nonlinear Klein–Gordon equation
    • 36 Y. Wang and B. Wang, High‐order multi‐symplectic schemes for the nonlinear Klein–Gordon equation, Appl Math Comput 166 ( 2005), 608–632.
    • (2005) Appl Math Comput , vol.166 , pp. 608-632
    • Wang, Y.1    Wang, B.2
  • 37
    • 34347347254 scopus 로고    scopus 로고
    • A numerical method for two‐dimensional Schrodinger equation using collocation and radial basis functions
    • 37 M. Dehghan and A. Shokri, A numerical method for two‐dimensional Schrodinger equation using collocation and radial basis functions, Comput Math Appl 54 ( 2007), 136–146.
    • (2007) Comput Math Appl , vol.54 , pp. 136-146
    • Dehghan, M.1    Shokri, A.2
  • 38
    • 33748938323 scopus 로고    scopus 로고
    • Implicit collocation technique for heat equation with non‐classic initial condition
    • 38 M. Dehghan, Implicit collocation technique for heat equation with non‐classic initial condition, Int J Non‐Linear Sci Numer Simul 7 ( 2006), 447–450.
    • (2006) Int J Non‐Linear Sci Numer Simul , vol.7 , pp. 447-450
    • Dehghan, M.1
  • 39
    • 34250357719 scopus 로고    scopus 로고
    • Time‐splitting procedures for the solution of the two‐dimensional transport equation
    • 39 M. Dehghan, Time‐splitting procedures for the solution of the two‐dimensional transport equation, Kybernetes 36 ( 2007), 791–805.
    • (2007) Kybernetes , vol.36 , pp. 791-805
    • Dehghan, M.1
  • 40
    • 85120594373 scopus 로고    scopus 로고
    • Numerical solution of the Klein‐Gordon equation via He's variational iteration method, Nonlinear Dyn
    • 40 F. Shakeri and M. Dehghan, Numerical solution of the Klein‐Gordon equation via He's variational iteration method, Nonlinear Dyn, in press ( 2006).
    • (2006)
    • Shakeri, F.1    Dehghan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.