-
1
-
-
50549175042
-
A model unified field equation
-
1 J. K. Perring and T. H. Skyrme, A model unified field equation, Nucl Phys 31 ( 1962), 550–555.
-
(1962)
Nucl Phys
, vol.31
, pp. 550-555
-
-
Perring, J.K.1
Skyrme, T.H.2
-
2
-
-
25144450080
-
The tanh method: exact solutions of the sine‐Gordon and the sinh‐Gordon equations
-
2 A. M. Wazwaz, The tanh method: exact solutions of the sine‐Gordon and the sinh‐Gordon equations, Appl Math Comput 167 ( 2005), 1196–1210.
-
(2005)
Appl Math Comput
, vol.167
, pp. 1196-1210
-
-
Wazwaz, A.M.1
-
3
-
-
20444416713
-
New quasi‐periodic waves of the (2 + 1)‐dimensional sine‐Gordon system
-
3 H. C. Hu and S. Y. Lou, New quasi‐periodic waves of the (2 + 1)‐dimensional sine‐Gordon system, Phys Lett A 341 ( 2005), 422–426.
-
(2005)
Phys Lett A
, vol.341
, pp. 422-426
-
-
Hu, H.C.1
Lou, S.Y.2
-
4
-
-
56149120397
-
Exact three‐soliton solution of the two‐dimensional sine‐Gordon equation
-
4 R. Hirota, Exact three‐soliton solution of the two‐dimensional sine‐Gordon equation, J Phys Soc Jpn 35 ( 1973), 15–66.
-
(1973)
J Phys Soc Jpn
, vol.35
, pp. 15-66
-
-
Hirota, R.1
-
5
-
-
0010501637
-
Particular solutions of the sine‐Gordon equation in 2 + 1 dimensions
-
5 J. Zagrodzinsky, Particular solutions of the sine‐Gordon equation in 2 + 1 dimensions, Phys Lett ( 1979), 284–286.
-
(1979)
Phys Lett
, pp. 284-286
-
-
Zagrodzinsky, J.1
-
6
-
-
0042839647
-
New exact solutions of the classical sine‐Gordon equation in 2 + 1 and 3 + 1 dimensions
-
6 G. Leibbrandt, New exact solutions of the classical sine‐Gordon equation in 2 + 1 and 3 + 1 dimensions, Phys Rev Lett 41 ( 1978), 435–438.
-
(1978)
Phys Rev Lett
, vol.41
, pp. 435-438
-
-
Leibbrandt, G.1
-
7
-
-
0010502036
-
Kadomtsev‐Petviashvili and two‐dimensional sine‐Gordon equations: reduction to Painleve transcendents
-
7 P. Kaliappan and M. Lakshmanan, Kadomtsev‐Petviashvili and two‐dimensional sine‐Gordon equations: reduction to Painleve transcendents, J Phys A 12 ( 1979), L249–L252.
-
(1979)
J Phys A
, vol.12
, pp. L249-L252
-
-
Kaliappan, P.1
Lakshmanan, M.2
-
8
-
-
0001997591
-
Numerical solution of the sine‐Gordon equation
-
8 B. Y. Guo, P. J. Pascual, M. J. Rodriguez, and L. Vàzquez, Numerical solution of the sine‐Gordon equation, Appl Math Comput 18 ( 1986), 1–14.
-
(1986)
Appl Math Comput
, vol.18
, pp. 1-14
-
-
Guo, B.Y.1
Pascual, P.J.2
Rodriguez, M.J.3
Vàzquez, L.4
-
9
-
-
0346688073
-
Modeling light bullets with the two‐dimensional sine‐Gordon equation
-
9 J. X. Xin, Modeling light bullets with the two‐dimensional sine‐Gordon equation, Phys D 135 ( 2000), 345–368.
-
(2000)
Phys D
, vol.135
, pp. 345-368
-
-
Xin, J.X.1
-
10
-
-
0001329612
-
Numerical solutions of 2 + 1 dimensional Sine‐Gordon solitons
-
10 P. L. Christiansen and P. S. Lomdahl, Numerical solutions of 2 + 1 dimensional Sine‐Gordon solitons, Phys 2D ( 1981), 482–494.
-
(1981)
Phys 2D
, pp. 482-494
-
-
Christiansen, P.L.1
Lomdahl, P.S.2
-
11
-
-
0026124767
-
Finite element approximation to two‐dimensional Sine‐Gordon solutions
-
11 J. Argyris, M. Haase, and J. C. Heinrich, Finite element approximation to two‐dimensional Sine‐Gordon solutions, Comput Methods Appl Mech Eng 86 ( 1991), 1–26.
-
(1991)
Comput Methods Appl Mech Eng
, vol.86
, pp. 1-26
-
-
Argyris, J.1
Haase, M.2
Heinrich, J.C.3
-
12
-
-
18144406135
-
Numerical simulation of two‐dimensional Sine‐Gordon solitons via a split cosine scheme
-
12 Q. Sheng, A. Q. M. Khaliq, and D. A. Voss, Numerical simulation of two‐dimensional Sine‐Gordon solitons via a split cosine scheme, Math Comput Simul 68 ( 2005), 355–373.
-
(2005)
Math Comput Simul
, vol.68
, pp. 355-373
-
-
Sheng, Q.1
Khaliq, A.Q.M.2
Voss, D.A.3
-
13
-
-
33847382284
-
An explicit numerical scheme for the Sine‐Gordon equation in 2 + 1 dimensions
-
13 A. G. Bratsos, An explicit numerical scheme for the Sine‐Gordon equation in 2 + 1 dimensions, Appl Numer Anal Comput Math 2 ( 2005), 189–211.
-
(2005)
Appl Numer Anal Comput Math
, vol.2
, pp. 189-211
-
-
Bratsos, A.G.1
-
14
-
-
0016101698
-
Numerical analysis of vortex motion on Josephson structures
-
14 K. Nakajima, Y. Onodera, T. Nakamura, and R. Sato, Numerical analysis of vortex motion on Josephson structures, J Appl Phys 45 ( 1974), 4095–4099.
-
(1974)
J Appl Phys
, vol.45
, pp. 4095-4099
-
-
Nakajima, K.1
Onodera, Y.2
Nakamura, T.3
Sato, R.4
-
15
-
-
42749107019
-
Kink propagation and trapping in a two‐dimensional curved Josephson junction
-
15 C. Gorria, Y. B. Gaididei, M. P. Soerensen, P. L. Christiansen, and J. G. Caputo, Kink propagation and trapping in a two‐dimensional curved Josephson junction, Phys Rev B 69 ( 2004), 134506 (1–10).
-
(2004)
Phys Rev B
, vol.69
, pp. 134506 (1-10)
-
-
Gorria, C.1
Gaididei, Y.B.2
Soerensen, M.P.3
Christiansen, P.L.4
Caputo, J.G.5
-
16
-
-
34249277434
-
The solution of the two‐dimensional sine‐Gordon equation using the method of lines
-
16 A. G. Bratsos, The solution of the two‐dimensional sine‐Gordon equation using the method of lines, J Comput Appl Math 206 ( 2007), 251–277.
-
(2007)
J Comput Appl Math
, vol.206
, pp. 251-277
-
-
Bratsos, A.G.1
-
17
-
-
0029332275
-
Numerical solutions of a damped sine‐Gordon equation in two space variables
-
17 K. Djidjeli, W. G. Price, and E. H. Twizell, Numerical solutions of a damped sine‐Gordon equation in two space variables, J Eng Math 29 ( 1995), 347–369.
-
(1995)
J Eng Math
, vol.29
, pp. 347-369
-
-
Djidjeli, K.1
Price, W.G.2
Twizell, E.H.3
-
18
-
-
0001167255
-
Numerical homoclinic instabilities in the sine‐Gordon equation
-
18 B. M. Herbst and M. J. Ablowitz, Numerical homoclinic instabilities in the sine‐Gordon equation, Quaest Math 15 ( 1992), 345–363.
-
(1992)
Quaest Math
, vol.15
, pp. 345-363
-
-
Herbst, B.M.1
Ablowitz, M.J.2
-
19
-
-
16144366227
-
Constance on the numerical solution of the sine‐Gordon equation. I. Integrable discretizations and homoclinic manifolds
-
19 M. J. Ablowitz, B. M. Herbst, and C. Schober, Constance on the numerical solution of the sine‐Gordon equation. I. Integrable discretizations and homoclinic manifolds, J Comput Phys 126 ( 1996), 299–314.
-
(1996)
J Comput Phys
, vol.126
, pp. 299-314
-
-
Ablowitz, M.J.1
Herbst, B.M.2
Schober, C.3
-
20
-
-
0347945239
-
Discrete singular convolution for the sine‐Gordon equation
-
20 G. W. Wei, Discrete singular convolution for the sine‐Gordon equation, Physica D 137 ( 2000), 247–259.
-
(2000)
Physica D
, vol.137
, pp. 247-259
-
-
Wei, G.W.1
-
21
-
-
0038440013
-
A predictor‐corrector scheme for the sine‐Gordon equation
-
21 A. Q. M. Khaliq, B. Abukhodair, Q. Sheng, and M. S. Ismail, A predictor‐corrector scheme for the sine‐Gordon equation, Numer Methods Partial Differ Equations 16 ( 2000), 133–146.
-
(2000)
Numer Methods Partial Differ Equations
, vol.16
, pp. 133-146
-
-
Khaliq, A.Q.M.1
Abukhodair, B.2
Sheng, Q.3
Ismail, M.S.4
-
22
-
-
11144275388
-
On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
-
22 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Equations 21 ( 2005), 24–40.
-
(2005)
Numer Methods Partial Differential Equations
, vol.21
, pp. 24-40
-
-
Dehghan, M.1
-
23
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
23 M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul 71 ( 2006), 16–30.
-
(2006)
Math Comput Simul
, vol.71
, pp. 16-30
-
-
Dehghan, M.1
-
24
-
-
33749559910
-
The one‐dimensional heat equation subject to a boundary integral specification, Chaos
-
24 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons Fractals 32 ( 2007), 661–675.
-
(2007)
Solitons Fractals
, vol.32
, pp. 661-675
-
-
Dehghan, M.1
-
25
-
-
33645276878
-
A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
-
25 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Differential Equations 22 ( 2006), 220–257.
-
(2006)
Numer Methods Partial Differential Equations
, vol.22
, pp. 220-257
-
-
Dehghan, M.1
-
26
-
-
33645862277
-
A local discontinuous Galerkin method for the Korteweg de Vries equation with boundary effect
-
26 H. Liu and J. Yan, A local discontinuous Galerkin method for the Korteweg de Vries equation with boundary effect, J Comput Phys 215 ( 2005), 197–218.
-
(2005)
J Comput Phys
, vol.215
, pp. 197-218
-
-
Liu, H.1
Yan, J.2
-
27
-
-
0025229330
-
Multiquadrics I. A scattered data approximation scheme with applications to computational fluid dynamics
-
27 E. J. Kansa, Multiquadrics I. A scattered data approximation scheme with applications to computational fluid dynamics, Comput Math Appl 19 ( 1990), 127–145.
-
(1990)
Comput Math Appl
, vol.19
, pp. 127-145
-
-
Kansa, E.J.1
-
28
-
-
0025210711
-
Multiquadrics, II. A scattered data approximation scheme with applications to computational fluid dynamics
-
28 E. J. Kansa, Multiquadrics, II. A scattered data approximation scheme with applications to computational fluid dynamics, Comput Math Appl 19 ( 1990), 147–161.
-
(1990)
Comput Math Appl
, vol.19
, pp. 147-161
-
-
Kansa, E.J.1
-
29
-
-
0002879831
-
An efficient numerical scheme for Burgers equation
-
29 Y. C. Hon and X. Z. Mao, An efficient numerical scheme for Burgers equation, Appl Math Comput 95 ( 1998), 37–50.
-
(1998)
Appl Math Comput
, vol.95
, pp. 37-50
-
-
Hon, Y.C.1
Mao, X.Z.2
-
30
-
-
0033133932
-
Multiquadric solution for shallow water equations
-
30 Y. C. Hon, K. F. Cheung, X. Z. Mao, and E. J. Kansa, Multiquadric solution for shallow water equations, ASCE J Hydraulic Eng 125 ( 1999), 524–533.
-
(1999)
ASCE J Hydraulic Eng
, vol.125
, pp. 524-533
-
-
Hon, Y.C.1
Cheung, K.F.2
Mao, X.Z.3
Kansa, E.J.4
-
31
-
-
0032529187
-
A numerical method for heat transfer problem using collocation and radial basis functions
-
31 M. Zerroukat, H. Power, and C. S. Chen, A numerical method for heat transfer problem using collocation and radial basis functions, Int J Numer Methods Eng 42 ( 1992), 1263–1278.
-
(1992)
Int J Numer Methods Eng
, vol.42
, pp. 1263-1278
-
-
Zerroukat, M.1
Power, H.2
Chen, C.S.3
-
32
-
-
0001291977
-
A radial basis function method for solving options pricing model
-
32 Y. C. Hon and X. Z. Mao, A radial basis function method for solving options pricing model, Financial Eng 8 ( 1999), 31–49.
-
(1999)
Financial Eng
, vol.8
, pp. 31-49
-
-
Hon, Y.C.1
Mao, X.Z.2
-
33
-
-
0001764927
-
On the use of boundary conditions for variational formulations arising in financial mathematics
-
33 M. Marcozzi, S. Choi, and C. S. Chen, On the use of boundary conditions for variational formulations arising in financial mathematics, Appl Math Comput 124 ( 2001), 197–214.
-
(2001)
Appl Math Comput
, vol.124
, pp. 197-214
-
-
Marcozzi, M.1
Choi, S.2
Chen, C.S.3
-
34
-
-
0002434097
-
Solving partial differential equations by collocation with radial basis functions
-
34 G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, A. Le Méhauté, C. Rabut, and L. L. Schumaker, editors, Surface fitting and multiresolution methods, Vanderbilt University Press, Nashville, TN, 1997.
-
(1997)
-
-
Fasshauer, G.E.1
-
35
-
-
0038577058
-
The decomposition method for studying the Klein–Gordon equation
-
35 S. M. El‐Sayed, The decomposition method for studying the Klein–Gordon equation, Chaos Solitons Fractals 18 ( 2003), 1025–1030.
-
(2003)
Chaos Solitons Fractals
, vol.18
, pp. 1025-1030
-
-
El‐Sayed, S.M.1
-
36
-
-
20444496902
-
High‐order multi‐symplectic schemes for the nonlinear Klein–Gordon equation
-
36 Y. Wang and B. Wang, High‐order multi‐symplectic schemes for the nonlinear Klein–Gordon equation, Appl Math Comput 166 ( 2005), 608–632.
-
(2005)
Appl Math Comput
, vol.166
, pp. 608-632
-
-
Wang, Y.1
Wang, B.2
-
37
-
-
34347347254
-
A numerical method for two‐dimensional Schrodinger equation using collocation and radial basis functions
-
37 M. Dehghan and A. Shokri, A numerical method for two‐dimensional Schrodinger equation using collocation and radial basis functions, Comput Math Appl 54 ( 2007), 136–146.
-
(2007)
Comput Math Appl
, vol.54
, pp. 136-146
-
-
Dehghan, M.1
Shokri, A.2
-
38
-
-
33748938323
-
Implicit collocation technique for heat equation with non‐classic initial condition
-
38 M. Dehghan, Implicit collocation technique for heat equation with non‐classic initial condition, Int J Non‐Linear Sci Numer Simul 7 ( 2006), 447–450.
-
(2006)
Int J Non‐Linear Sci Numer Simul
, vol.7
, pp. 447-450
-
-
Dehghan, M.1
-
39
-
-
34250357719
-
Time‐splitting procedures for the solution of the two‐dimensional transport equation
-
39 M. Dehghan, Time‐splitting procedures for the solution of the two‐dimensional transport equation, Kybernetes 36 ( 2007), 791–805.
-
(2007)
Kybernetes
, vol.36
, pp. 791-805
-
-
Dehghan, M.1
-
40
-
-
85120594373
-
Numerical solution of the Klein‐Gordon equation via He's variational iteration method, Nonlinear Dyn
-
40 F. Shakeri and M. Dehghan, Numerical solution of the Klein‐Gordon equation via He's variational iteration method, Nonlinear Dyn, in press ( 2006).
-
(2006)
-
-
Shakeri, F.1
Dehghan, M.2
|