메뉴 건너뛰기




Volumn , Issue , 2006, Pages 3078-3085

Investigation on diversity in homogeneous and heterogeneous ensembles

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL EFFICIENCY; DATA REDUCTION; MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 40649112662     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (33)
  • 1
    • 84867038939 scopus 로고    scopus 로고
    • Experiments with classifier combining rules, MCS2000,
    • R. P. Duin, "Experiments with classifier combining rules," MCS2000, no. LNCS 1857, 2000.
    • (2000) LNCS 1857
    • Duin, R.P.1
  • 3
    • 84947604413 scopus 로고    scopus 로고
    • Bagging and boosting for the nearest mean classifier: Effects of sample size on diversity and accuracy
    • M. Skurichina, L. I. Kuncheva, and R. P. Duin, "Bagging and boosting for the nearest mean classifier: Effects of sample size on diversity and accuracy," Lecture Notes in Computer Science, vol. 2364, 2002.
    • (2002) Lecture Notes in Computer Science , vol.2364
    • Skurichina, M.1    Kuncheva, L.I.2    Duin, R.P.3
  • 4
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • August
    • G. I. Webb and Z. Zheng, "Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, vol. 16, no. 8, August 2004.
    • (2004) IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , vol.16 , Issue.8
    • Webb, G.I.1    Zheng, Z.2
  • 5
    • 35048862917 scopus 로고    scopus 로고
    • That elusive diversity in classifier ensembles
    • L. I. Kuncheva, "That elusive diversity in classifier ensembles," Lecture Note of Computer Science, vol. 2652, pp. 1126-1138, 2003.
    • (2003) Lecture Note of Computer Science , vol.2652 , pp. 1126-1138
    • Kuncheva, L.I.1
  • 7
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • G. I. Webb, "Multiboosting: A technique for combining boosting and wagging," Machine Learning, vol. 40.
    • Machine Learning , vol.40
    • Webb, G.I.1
  • 9
    • 40649124476 scopus 로고    scopus 로고
    • G. Tsoumakas, I. Katakis, and I. Vlahavas, Effective voting of heterogeneous classifiers, In Proceedings of the 15th European Conference on Machine Learning, 2004.
    • G. Tsoumakas, I. Katakis, and I. Vlahavas, "Effective voting of heterogeneous classifiers," In Proceedings of the 15th European Conference on Machine Learning, 2004.
  • 11
    • 33646536577 scopus 로고    scopus 로고
    • S. Diplaris, G. Tsoumakas, P. Mitkas, and I. Vlahavas, Protein classification with multiple algorithms, In Pmceedings of the 10th Panhellenic Conference on Informatics, PCI2005, 2005.
    • S. Diplaris, G. Tsoumakas, P. Mitkas, and I. Vlahavas, "Protein classification with multiple algorithms," In Pmceedings of the 10th Panhellenic Conference on Informatics, PCI2005, 2005.
  • 15
    • 0030365938 scopus 로고    scopus 로고
    • K. Turner and J. Ghosh, Error correlation and error reduction in ensemble classifiers, Connection Science, 8, no. 34, pp. 385-404, 12 1996.
    • K. Turner and J. Ghosh, "Error correlation and error reduction in ensemble classifiers," Connection Science, vol. 8, no. 34, pp. 385-404, 12 1996.
  • 16
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," Information Fusion, vol. 6, no. 1, pp. 5-20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 18
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • August
    • G. I. Webb and Z. Zheng, "Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques," IEEE Transactions on Knowkedge and Data Engineering, vol. 16, no. 8, August 2004.
    • (2004) IEEE Transactions on Knowkedge and Data Engineering , vol.16 , Issue.8
    • Webb, G.I.1    Zheng, Z.2
  • 19
    • 26444611852 scopus 로고    scopus 로고
    • Evaluation of diversity measrues for binary classifier ensembles
    • Multiple Classifier System 2005
    • A. Narasimhamurthy, "Evaluation of diversity measrues for binary classifier ensembles," Multiple Classifier System 2005, LNCS, vol. 3541, pp. 267-277, 2005.
    • (2005) LNCS , vol.3541 , pp. 267-277
    • Narasimhamurthy, A.1
  • 20
    • 70350588622 scopus 로고    scopus 로고
    • Software Diversity: Practical Statistics for its Measurement and Exploitation
    • Department of Computer Science, University of Exeter
    • W. Krzanowski and P. D., Software Diversity: Practical Statistics for its Measurement and Exploitation. Prince of Wales Road, Exeter, EX4 4PT: Department of Computer Science, University of Exeter, 1996.
    • (1996) Prince of Wales Road, Exeter, EX4 4PT
    • Krzanowski, W.1    Partridge, D.2
  • 21
    • 0035406897 scopus 로고    scopus 로고
    • A comparative study of feature-salience ranking techniques
    • W. Wang, P. Johnes, and D. Partridge, "A comparative study of feature-salience ranking techniques," Neural Computation, The MIT Press, vol. 13, pp. 1603-1623, 2001.
    • (2001) Neural Computation, The MIT Press , vol.13 , pp. 1603-1623
    • Wang, W.1    Johnes, P.2    Partridge, D.3
  • 23
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based feature selection machine learning,
    • Ph.D. dissertation, Department of Computer Science University of Waikato, New Zealand
    • M. A. Hall, "Correlation-based feature selection machine learning," Ph.D. dissertation, Department of Computer Science University of Waikato, New Zealand., 1998.
    • (1998)
    • Hall, M.A.1
  • 24
    • 0022094206 scopus 로고    scopus 로고
    • Generalized best-first search strategies and the optimality of a*
    • R. Dechter and J. Pearl, "Generalized best-first search strategies and the optimality of a*," Journal of the ACM (JACM).
    • Journal of the ACM (JACM)
    • Dechter, R.1    Pearl, J.2
  • 25
    • 0006001358 scopus 로고    scopus 로고
    • Statistics Department, University of California, Berkeley, Tech. Rep, September
    • L. Breiman, "Random forests - random features," Statistics Department, University of California, Berkeley, Tech. Rep., September 1999.
    • (1999) Random forests - random features
    • Breiman, L.1
  • 26
    • 0001171722 scopus 로고    scopus 로고
    • Using analytic qp and sparseness to speed training of support vector machines
    • J. C. Piatt, "Using analytic qp and sparseness to speed training of support vector machines," Neural Information Processing Systems 11, 1998.
    • (1998) Neural Information Processing Systems , vol.11
    • Piatt, J.C.1
  • 27
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D. Aha, D. Kibler, and M. Albert, "Instance-based learning algorithms," Machine Learning, vol. 6, pp. 37-36, 1991.
    • (1991) Machine Learning , vol.6 , pp. 37-36
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 30
    • 0026692226 scopus 로고
    • Stacked generalization, neural networks
    • D. H. Wolpert, "Stacked generalization, neural networks," Neural Networks, vol. 5, pp. 241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 32
    • 40649094501 scopus 로고    scopus 로고
    • University of Waikato
    • E. Frank, "Weka on http://www.cs.waikato.ac.nz/ml/weka," University of Waikato, 2003.
    • (2003) Weka on
    • Frank, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.