메뉴 건너뛰기




Volumn 71, Issue 7-9, 2008, Pages 1642-1655

Wavelet packets approach to blind separation of statistically dependent sources

Author keywords

Independent component analysis; Mutual information; Sub band decomposition; Wavelet packets

Indexed keywords

ALGORITHMS; BLIND SOURCE SEPARATION; COMPUTATIONAL EFFICIENCY; INDEPENDENT COMPONENT ANALYSIS;

EID: 40649083042     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.04.002     Document Type: Article
Times cited : (47)

References (44)
  • 3
    • 14844338615 scopus 로고    scopus 로고
    • Criteria based on mutual information minimization for blind source separation in post nonlinear mixtures
    • Archard S., Pham D.T., and Jutten Ch. Criteria based on mutual information minimization for blind source separation in post nonlinear mixtures. Signal Process 85 (2005) 965-975
    • (2005) Signal Process , vol.85 , pp. 965-975
    • Archard, S.1    Pham, D.T.2    Jutten, Ch.3
  • 4
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A.J., and Sejnowski T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7 (1995) 1129-1159
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 5
    • 1242286406 scopus 로고    scopus 로고
    • Independent component analysis based on nonparametric density estimation
    • Boscolo R., and Pan H. Independent component analysis based on nonparametric density estimation. IEEE Trans. Neural Networks 15 (2004) 55-65
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 55-65
    • Boscolo, R.1    Pan, H.2
  • 8
    • 0027812550 scopus 로고
    • Blind beamforming for non-Gaussian signals
    • Cardoso J.F., and Soulomniac A. Blind beamforming for non-Gaussian signals. Proc. IEE F 140 (1993) 362-370
    • (1993) Proc. IEE F , vol.140 , pp. 362-370
    • Cardoso, J.F.1    Soulomniac, A.2
  • 9
    • 8344285779 scopus 로고    scopus 로고
    • Dependence, correlation and gaussianity in independent component analysis
    • Cardoso J.F. Dependence, correlation and gaussianity in independent component analysis. J. Mach. Learning Res, 4 (2003) 1177-1203
    • (2003) J. Mach. Learning Res , vol.4 , pp. 1177-1203
    • Cardoso, J.F.1
  • 10
    • 0035385132 scopus 로고    scopus 로고
    • A new approach to near-infrared spectral data analysis using independent component analysis
    • Chen J., and Wang X.Z. A new approach to near-infrared spectral data analysis using independent component analysis. J. Chem. Inform. Comput. Sci. 41 (2001) 992-1001
    • (2001) J. Chem. Inform. Comput. Sci. , vol.41 , pp. 992-1001
    • Chen, J.1    Wang, X.Z.2
  • 11
    • 33745711570 scopus 로고    scopus 로고
    • Fast kernel density independent component analysis
    • Chen A. Fast kernel density independent component analysis. Lecture Notes in Computer Science 3889 (2006) 24-31
    • (2006) Lecture Notes in Computer Science , vol.3889 , pp. 24-31
    • Chen, A.1
  • 13
    • 27644557910 scopus 로고    scopus 로고
    • A. Cichocki, Blind source separation: new tools for extraction of source signals and denoising, Proceedings of the SPIE 5818, Orlando, FL, 2005, pp. 11-25.
    • A. Cichocki, Blind source separation: new tools for extraction of source signals and denoising, Proceedings of the SPIE 5818, Orlando, FL, 2005, pp. 11-25.
  • 15
    • 78650831931 scopus 로고    scopus 로고
    • General component analysis and blind source separation methods for analyzing multichannel brain signals
    • Wenger M.J., and Schuster C. (Eds), Erlbaum, Mahwah, NJ
    • Cichocki A. General component analysis and blind source separation methods for analyzing multichannel brain signals. In: Wenger M.J., and Schuster C. (Eds). Statistical and Process Models of Cognitive Aging, Notre Dame Series on Quantitative Methods (2007), Erlbaum, Mahwah, NJ
    • (2007) Statistical and Process Models of Cognitive Aging, Notre Dame Series on Quantitative Methods
    • Cichocki, A.1
  • 17
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Process 36 (1994) 287-314
    • (1994) Signal Process , vol.36 , pp. 287-314
    • Comon, P.1
  • 19
    • 33748623423 scopus 로고    scopus 로고
    • Independent component analysis for hyperspectral remote sensing
    • 017008-1-13
    • Du Q., Kopriva I., and Szu H. Independent component analysis for hyperspectral remote sensing. Opt Eng 45 (2006) 017008-1-13
    • (2006) Opt Eng , vol.45
    • Du, Q.1    Kopriva, I.2    Szu, H.3
  • 20
    • 23044451368 scopus 로고    scopus 로고
    • Sparse component analysis and blind source separation of underdetermined mixtures
    • Georgiev P., Theis F., and Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Networks 16 (2005) 992-996
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 992-996
    • Georgiev, P.1    Theis, F.2    Cichocki, A.3
  • 21
    • 40649110624 scopus 로고    scopus 로고
    • A. Hyvärinen, Independent component analysis for time-dependent stochastic processes. Proceedings of the International Conference on Artificial Neural Networks (ICANN'98), Skovde, Sweden, 1998, pp. 541-546.
    • A. Hyvärinen, Independent component analysis for time-dependent stochastic processes. Proceedings of the International Conference on Artificial Neural Networks (ICANN'98), Skovde, Sweden, 1998, pp. 541-546.
  • 22
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 24
    • 35048849952 scopus 로고    scopus 로고
    • Temporal decorrelation as preprocessing for linear and post-nonlinear ICA
    • Karvanen J., and Tanaka T. Temporal decorrelation as preprocessing for linear and post-nonlinear ICA. Lecture Notes Comput Sci 3195 (2004) 774-781
    • (2004) Lecture Notes Comput Sci , vol.3195 , pp. 774-781
    • Karvanen, J.1    Tanaka, T.2
  • 25
    • 8344255793 scopus 로고    scopus 로고
    • Multiscale framework for blind separation of linearly mixed signals
    • Kisilev P., Zibulevsky M., and Zeevi Y.Y. Multiscale framework for blind separation of linearly mixed signals. J. Mach. Learning Res. 4 (2003) 1339-1363
    • (2003) J. Mach. Learning Res. , vol.4 , pp. 1339-1363
    • Kisilev, P.1    Zibulevsky, M.2    Zeevi, Y.Y.3
  • 26
    • 40649109190 scopus 로고    scopus 로고
    • I. Kopriva, D. Seršić, MATLAB code for WP SDICA algorithm: 〈http://www.zesoi.fer.hr/~sdamir/icasb〉.
    • I. Kopriva, D. Seršić, MATLAB code for WP SDICA algorithm: 〈http://www.zesoi.fer.hr/~sdamir/icasb〉.
  • 27
    • 1242309785 scopus 로고    scopus 로고
    • Independent component analysis approach to image sharpening in the presence of atmospheric turbulence
    • Kopriva I., Du Q., Szu H., and Wasylkiwskyj W. Independent component analysis approach to image sharpening in the presence of atmospheric turbulence. Opt. Commun. 233 (2004) 7-14
    • (2004) Opt. Commun. , vol.233 , pp. 7-14
    • Kopriva, I.1    Du, Q.2    Szu, H.3    Wasylkiwskyj, W.4
  • 29
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of sparse representation and blind source separation
    • Li Y., Cichocki A., and Amari S. Analysis of sparse representation and blind source separation. Neural Comput 16 (2004) 1193-1234
    • (2004) Neural Comput , vol.16 , pp. 1193-1234
    • Li, Y.1    Cichocki, A.2    Amari, S.3
  • 30
    • 31344466301 scopus 로고    scopus 로고
    • Underdetermined blind source separation based on sparse representation
    • Li Y., Amari S., Cichocki A., Ho D.W.C., and Xie S. Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 54 (2006) 423-437
    • (2006) IEEE Trans. Signal Process. , vol.54 , pp. 423-437
    • Li, Y.1    Amari, S.2    Cichocki, A.3    Ho, D.W.C.4    Xie, S.5
  • 33
    • 0032477880 scopus 로고    scopus 로고
    • Spatially independent activity patterns in functional magnetic resonance imaging data during the stroop color-naming task
    • McKeown M., Makeig S., Brown G., Jung T.P., Kinderman S., Lee T.W., and Sejnowski T.J. Spatially independent activity patterns in functional magnetic resonance imaging data during the stroop color-naming task. Proc. Natl. Acad. Sci. 95 (1998) 803-810
    • (1998) Proc. Natl. Acad. Sci. , vol.95 , pp. 803-810
    • McKeown, M.1    Makeig, S.2    Brown, G.3    Jung, T.P.4    Kinderman, S.5    Lee, T.W.6    Sejnowski, T.J.7
  • 34
    • 0002375263 scopus 로고    scopus 로고
    • Blind source separation and analysis of multispectral astronomical images
    • Nuzillard D., and Bijaoui A. Blind source separation and analysis of multispectral astronomical images. Astron Astrophys Suppl Ser 147 (2000) 129-138
    • (2000) Astron Astrophys Suppl Ser , vol.147 , pp. 129-138
    • Nuzillard, D.1    Bijaoui, A.2
  • 35
    • 40649095100 scopus 로고    scopus 로고
    • J.C. Principe, D. Xu, J.W. Fisher, Information-theoretic learning. In: Unsupervised Adaptive Filtering-Volume I Blind Source Separation. Wiley, New York, 2000 (Chapter 7).
    • J.C. Principe, D. Xu, J.W. Fisher, Information-theoretic learning. In: Unsupervised Adaptive Filtering-Volume I Blind Source Separation. Wiley, New York, 2000 (Chapter 7).
  • 36
    • 0036501234 scopus 로고    scopus 로고
    • Advanced ICA-based receivers for block fading DS-CDMA channels
    • Ristaniemi T., and Joutensalo J. Advanced ICA-based receivers for block fading DS-CDMA channels. Signal Process 85 (2002) 417-431
    • (2002) Signal Process , vol.85 , pp. 417-431
    • Ristaniemi, T.1    Joutensalo, J.2
  • 38
    • 4544239721 scopus 로고    scopus 로고
    • T. Tanaka, A. Cichocki, Subband decomposition independent component analysis and new performance criteria, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2004), Montreal, Canada, 2004, pp. 541-544.
    • T. Tanaka, A. Cichocki, Subband decomposition independent component analysis and new performance criteria, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2004), Montreal, Canada, 2004, pp. 541-544.
  • 40
    • 33645721350 scopus 로고    scopus 로고
    • An adaptive method for subband decomposition ICA
    • Zhang K., and Chan L.W. An adaptive method for subband decomposition ICA. Neural Comput 18 (2006) 191-223
    • (2006) Neural Comput , vol.18 , pp. 191-223
    • Zhang, K.1    Chan, L.W.2
  • 41
    • 33745697451 scopus 로고    scopus 로고
    • Enhancement of source independence for blind source separation
    • Zhang K., and Chan L.W. Enhancement of source independence for blind source separation. Lecture Notes in Computer Science 3889 (2006) 731-738
    • (2006) Lecture Notes in Computer Science , vol.3889 , pp. 731-738
    • Zhang, K.1    Chan, L.W.2
  • 42
    • 40649088162 scopus 로고    scopus 로고
    • K. Zhang, L.W. Chan, MATLAB code for adaptive SDICA algorithm 〈http://appsrv.cse.cuhk.edu.hk/~kzhang/research.html〉.
    • K. Zhang, L.W. Chan, MATLAB code for adaptive SDICA algorithm 〈http://appsrv.cse.cuhk.edu.hk/~kzhang/research.html〉.
  • 43
    • 2442505772 scopus 로고    scopus 로고
    • Self-adaptive blind source separation based on activation function adaptation
    • Zhang L., Cichocki A., and Amari S. Self-adaptive blind source separation based on activation function adaptation. IEEE Trans. Neural Networks 15 (2004) 233-244
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 233-244
    • Zhang, L.1    Cichocki, A.2    Amari, S.3
  • 44
    • 84899018983 scopus 로고    scopus 로고
    • M. Zibulevsky, P. Kisilev, Y.Y. Zeevi, B. Pearlmutter, Blind source separation via multinode sparse representation, Advances in Neural Information Processing Systems, Morgan Kaufman, Los Altos, CA, 2002, pp. 185-191.
    • M. Zibulevsky, P. Kisilev, Y.Y. Zeevi, B. Pearlmutter, Blind source separation via multinode sparse representation, Advances in Neural Information Processing Systems, Morgan Kaufman, Los Altos, CA, 2002, pp. 185-191.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.