메뉴 건너뛰기




Volumn 56, Issue 1, 2008, Pages 83-95

Global dynamics of delay differential equations

Author keywords

Delay differential equation; Discrete Lyapunov functional; Feedback condition; Global attractor; Heteroclinic orbit; Morse decomposition; Periodic orbit; Unstable set

Indexed keywords


EID: 40449089355     PISSN: 00315303     EISSN: 15882829     Source Type: Journal    
DOI: 10.1007/s10998-008-5083-x     Document Type: Article
Times cited : (55)

References (40)
  • 3
    • 3042525532 scopus 로고    scopus 로고
    • Connecting orbits from synchronous periodic solutions to phase-locked periodic solutions in a delay differential system
    • to appear
    • Y. Chen, T. Krisztin and J. Wu, Connecting orbits from synchronous periodic solutions to phase-locked periodic solutions in a delay differential system, J. Differential Equations, to appear.
    • J. Differential Equations
    • Chen, Y.1    Krisztin, T.2    Wu, J.3
  • 4
    • 0038346772 scopus 로고    scopus 로고
    • Existence and attraction of a phase-locked oscillation in a delayed network of two neurons
    • Y. Chen and J. Wu, Existence and attraction of a phase-locked oscillation in a delayed network of two neurons, Differential Integral Equations, 14 (2001), 1181-1236.
    • (2001) Differential Integral Equations , vol.14 , pp. 1181-1236
    • Chen, Y.1    Wu, J.2
  • 6
    • 0001852665 scopus 로고
    • Connections between Morse sets for delay differential equations
    • B. Fiedler and J. Mallet-Paret, Connections between Morse sets for delay differential equations, J. Reine Angew. Math., 397 (1989), 23-41.
    • (1989) J. Reine Angew. Math. , vol.397 , pp. 23-41
    • Fiedler, B.1    Mallet-Paret, J.2
  • 10
    • 0001009039 scopus 로고
    • Existence of chaos in control systems with delayed feedback
    • U. van der Heiden and H.-O. Walther, Existence of chaos in control systems with delayed feedback, J. Differential Equations, 47 (1983), 273-295.
    • (1983) J. Differential Equations , vol.47 , pp. 273-295
    • Van Der Heiden, U.1    Walther, H.-O.2
  • 12
    • 0003988657 scopus 로고
    • Stanford Univ. Press Russian edition 1959
    • N. Krasovskii, Stability of Motion, Stanford Univ. Press, 1963 (Russian edition 1959).
    • (1963) Stability of Motion
    • Krasovskii, N.1
  • 13
    • 0012959514 scopus 로고    scopus 로고
    • Periodic orbits and the global attractor for delayed monotone negative feedback
    • T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback, Electron. J. Qual. Theory Differ. Equ. (Szeged) (2000), 12 pp.
    • (2000) Electron. J. Qual. Theory Differ. Equ. (Szeged)
    • Krisztin, T.1
  • 14
    • 77955823017 scopus 로고    scopus 로고
    • The unstable set of zero and the global attractor for delayed monotone positive feedback
    • Kennesaw, GA Discrete Contin. Dynam. Systems 2001, Added Volume
    • T. Krisztin, The unstable set of zero and the global attractor for delayed monotone positive feedback, Dynamical systems and differential equations (Kennesaw, GA, 2000). Discrete Contin. Dynam. Systems 2001, Added Volume, 229-240.
    • (2000) Dynamical Systems and Differential Equations , pp. 229-240
    • Krisztin, T.1
  • 15
    • 0012753742 scopus 로고    scopus 로고
    • Unstable sets of periodic orbits and the global attractor for delayed feedback
    • T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback, Fields Institute Communications, 29 (2001), 267-296.
    • (2001) Fields Institute Communications , vol.29 , pp. 267-296
    • Krisztin, T.1
  • 16
    • 0001948592 scopus 로고    scopus 로고
    • Unique periodic orbits for delayed positive feedback and the global attractor
    • T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor, J. Dynam. Differential Equations, 13 (2001), 1-57.
    • (2001) J. Dynam. Differential Equations , vol.13 , pp. 1-57
    • Krisztin, T.1    Walther, H.-O.2
  • 19
    • 22444452217 scopus 로고    scopus 로고
    • Erratic solutions of simple delay equations
    • B. Lani-Wayda, Erratic solutions of simple delay equations, Trans. Amer. Math. Soc., 351 (1999), 901-945.
    • (1999) Trans. Amer. Math. Soc. , vol.351 , pp. 901-945
    • Lani-Wayda, B.1
  • 20
    • 33750556454 scopus 로고    scopus 로고
    • Wandering solutions of equations with sine-like feedback
    • B. Lani-Wayda, Wandering solutions of equations with sine-like feedback, Memoirs of the Amer. Math. Soc., Vol. 151, No. 718, 2001.
    • Memoirs of the Amer. Math. Soc. , vol.151 , Issue.718 , pp. 2001
    • Lani-Wayda, B.1
  • 21
    • 0036686270 scopus 로고    scopus 로고
    • The Lefschetz fixed point theorem and sybolic dynamics in delay equations
    • B. Lani-Wayda and R. Srzednicki, The Lefschetz fixed point theorem and sybolic dynamics in delay equations, Ergodic Theory Dynam. Systems, 22 (2002), 1215-1232.
    • (2002) Ergodic Theory Dynam. Systems , vol.22 , pp. 1215-1232
    • Lani-Wayda, B.1    Srzednicki, R.2
  • 22
    • 84972492596 scopus 로고
    • Chaotic motion generated by delayed negative feedback I. A transversality criterion
    • B. Lani-Wayda and H.-O. Walther, Chaotic motion generated by delayed negative feedback I. A transversality criterion, Differential and Integral Equations, 8 (1995), 1407-1452.
    • (1995) Differential and Integral Equations , vol.8 , pp. 1407-1452
    • Lani-Wayda, B.1    Walther, H.-O.2
  • 23
    • 0001282321 scopus 로고    scopus 로고
    • Chaotic motion generated by delayed negative feedback II. Construction of nonlinearities
    • B. Lani-Wayda and H.-O. Walther, Chaotic motion generated by delayed negative feedback II. Construction of nonlinearities, Mathematische Nachrichten, 180 (1996), 141-211.
    • (1996) Mathematische Nachrichten , vol.180 , pp. 141-211
    • Lani-Wayda, B.1    Walther, H.-O.2
  • 24
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • MacKey, M.C.1    Glass, L.2
  • 25
    • 0000226142 scopus 로고
    • Morse decompositions for differential delay equations
    • J. Mallet-Paret, Morse decompositions for differential delay equations, J. Differential Equations, 72 (1988), 270-315.
    • (1988) J. Differential Equations , vol.72 , pp. 270-315
    • Mallet-Paret, J.1
  • 26
    • 0030102662 scopus 로고    scopus 로고
    • Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions
    • J. Mallet-Paret and G. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations, 125 (1996), 385-440.
    • (1996) J. Differential Equations , vol.125 , pp. 385-440
    • Mallet-Paret, J.1    Sell, G.2
  • 27
    • 0030102885 scopus 로고    scopus 로고
    • The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay
    • J. Mallet-Paret and G. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations, 125 (1996), 441-489.
    • (1996) J. Differential Equations , vol.125 , pp. 441-489
    • Mallet-Paret, J.1    Sell, G.2
  • 29
    • 0030503977 scopus 로고    scopus 로고
    • On the global dynamics of attractors for scalar delay equations
    • C. Mccord and K. Mischaikow, On the global dynamics of attractors for scalar delay equations, J. Amer. Math. Soc., 9 (1996), 1095-1133.
    • (1996) J. Amer. Math. Soc. , vol.9 , pp. 1095-1133
    • McCord, C.1    Mischaikow, K.2
  • 31
    • 0036131621 scopus 로고    scopus 로고
    • Morse decomposition for delay-differential equations with positive feedback
    • M. Polner, Morse decomposition for delay-differential equations with positive feedback, Nonlinear Anal., 48 (2002), 377-397.
    • (2002) Nonlinear Anal. , vol.48 , pp. 377-397
    • Polner, M.1
  • 32
    • 36348976487 scopus 로고    scopus 로고
    • Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback
    • G. Röst and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669.
    • (2007) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.463 , pp. 2655-2669
    • Röst, G.1    Wu, J.2
  • 34
    • 0002684591 scopus 로고
    • An invariant manifold of slowly oscillating solutions for x(t) = -μ X(t) + f(x(t - 1)) (t) = -μx(t) + f(x(t - 1))
    • H.-O. Walther, An invariant manifold of slowly oscillating solutions for x(t) = -μ x(t) + f(x(t - 1)) (t) = -μx(t) + f(x(t - 1)), J. Reine Angew. Math., 414 (1991), 67-112.
    • (1991) J. Reine Angew. Math. , vol.414 , pp. 67-112
    • Walther, H.-O.1
  • 35
    • 3042574339 scopus 로고
    • A differential delay equation with a planar attractor
    • Université Cadi Ayyad Marrakech
    • H.-O. Walther, A differential delay equation with a planar attractor, Proc. of the Int. Conf. on Differential Equations, Université Cadi Ayyad, Marrakech, 1991.
    • (1991) Proc. of the Int. Conf. on Differential Equations
    • Walther, H.-O.1
  • 37
    • 40449129613 scopus 로고    scopus 로고
    • The singularities of an attractor of a delay differential equation
    • H.-O. Walther, The singularities of an attractor of a delay differential equation, Funct. Differ. Equ., 5 (1998), 513-548.
    • (1998) Funct. Differ. Equ. , vol.5 , pp. 513-548
    • Walther, H.-O.1
  • 38
    • 3042583879 scopus 로고    scopus 로고
    • Smoothness of the attractor of almost all solutions of a delay differential equation
    • H.-O. Walther and M. Yebdri, Smoothness of the attractor of almost all solutions of a delay differential equation, Dissertationes Math., 368 (1997).
    • (1997) Dissertationes Math. , vol.368
    • Walther, H.-O.1    Yebdri, M.2
  • 39
    • 84941442792 scopus 로고
    • A non-linear difference-differential equation
    • E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math., 194 (1955), 66-87.
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.