메뉴 건너뛰기




Volumn , Issue SPEC. ISSUE, 2001, Pages 229-240

The unstable set of zero and the global attractor for delayed monotone positive feedback

Author keywords

Delay differential equation; Discrete Lyapunov functional; Global attractor; Unstable set

Indexed keywords

DIFFERENTIAL EQUATIONS; LYAPUNOV FUNCTIONS;

EID: 77955823017     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (24)
  • 1
    • 3042525533 scopus 로고    scopus 로고
    • On a network of two neurons with delay: Existence and attraction of phase-locked oscillation
    • to appear
    • Y. Chen and J. Wu, On a network of two neurons with delay: existence and attraction of phase-locked oscillation, Advances in Differential Equations, (to appear).
    • Advances in Differential Equations
    • Chen, Y.1    Wu, J.2
  • 2
    • 0034629673 scopus 로고    scopus 로고
    • Connecting orbits from synchronous periodic solutions to phase-locked periodic solutions in a delay differential system
    • Y. Chen, J. Wu and T. Krisztin, Connecting orbits from synchronous periodic solutions to phase-locked periodic solutions in a delay differential system, J. Differential Equations, 163 (2000), 130-173.
    • (2000) J. Differential Equations , vol.163 , pp. 130-173
    • Chen, Y.1    Wu, J.2    Krisztin, T.3
  • 5
    • 0001852665 scopus 로고
    • Connections between Morse sets for delay differential equations
    • B. Fiedler and J. Mallet-Paret, Connections between Morse sets for delay differential equations, J. reine angew. Math., 397 (1989), 23-41.
    • (1989) J. Reine Angew. Math. , vol.397 , pp. 23-41
    • Fiedler, B.1    Mallet-Paret, J.2
  • 9
    • 0041507007 scopus 로고
    • Global Analysis ofrecurrent neural networks
    • (Domany, E., van Hemmen, J.L. and Schulten, K. eds.), Springer-Verlag, New York
    • A.V.M. Herz, Global Analysis ofrecurrent neural networks, in "Models of Neural Networks", Vol. 3 (Domany, E., van Hemmen, J.L. and Schulten, K. eds.), Springer-Verlag, New York, 1994.
    • (1994) Models of Neural Networks , vol.3
    • Herz, A.V.M.1
  • 10
    • 0012753742 scopus 로고    scopus 로고
    • Unstable sets of periodic orbits and the global attractor for delayed feedback
    • (Lisbon,), Fields Institute Communications, (to appear)
    • T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback, in Proc. of the Conf. on Functional Differential and Difference Equations (Lisbon, 1999), Fields Institute Communications, (to appear).
    • (1999) Proc. of the Conf. on Functional Differential and Difference Equations
    • Krisztin, T.1
  • 11
    • 84901853796 scopus 로고    scopus 로고
    • Unique periodic orbits for delayed positive feedback and the global attractor
    • to appear
    • T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor, J. Dynamics and Differential Equations, (to appear).
    • J. Dynamics and Differential Equations
    • Krisztin, T.1    Walther, H.-O.2
  • 12
    • 0003265680 scopus 로고    scopus 로고
    • Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback
    • Amer. Math. Soc., Providence, RI
    • T. Krisztin, H.-O. Walther and J. Wu, "Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback", Fields Institute Monographs 11, Amer. Math. Soc., Providence, RI, 1999.
    • (1999) Fields Institute Monographs , vol.11
    • Krisztin, T.1    Walther, H.-O.2    Wu, J.3
  • 14
    • 0000226142 scopus 로고
    • Morse decompositions for differential delay equations
    • J. Mallet-Paret, Morse decompositions for differential delay equations, J. Differential Equations, 72 (1988), 270-315.
    • (1988) J. Differential Equations , vol.72 , pp. 270-315
    • Mallet-Paret, J.1
  • 15
    • 0030102662 scopus 로고    scopus 로고
    • Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions
    • J. Mallet-Paret and G. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations, 125 1996, 385-440.
    • (1996) J. Differential Equations , vol.125 , pp. 385-440
    • Mallet-Paret, J.1    Sell, G.2
  • 16
    • 0030102885 scopus 로고    scopus 로고
    • The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay
    • J. Mallet-Paret and G. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations, 125 1996, 441-489.
    • (1996) J. Differential Equations , vol.125 , pp. 441-489
    • Mallet-Paret, J.1    Sell, G.2
  • 18
    • 0030503977 scopus 로고    scopus 로고
    • On the global dynamics of attractors for scalar delay equations
    • C. McCord and K. Mischaikow, On the global dynamics of attractors for scalar delay equations, J. Amer. Math. Soc., 9 (1996), 1095-1133.
    • (1996) J. Amer. Math. Soc. , vol.9 , pp. 1095-1133
    • McCord, C.1    Mischaikow, K.2
  • 19
    • 0031568375 scopus 로고    scopus 로고
    • Effect of delay on the boundary of the basin of attraction in a self-excited single neuron
    • K. Pakdaman, C.P. Malta, C. Grotta-Ragazzo and J.-F. Vibert, Effect of delay on the boundary of the basin of attraction in a self-excited single neuron, Neural Computation, 9 (1997), 319-336.
    • (1997) Neural Computation , vol.9 , pp. 319-336
    • Pakdaman, K.1    Malta, C.P.2    Grotta-Ragazzo, C.3    Vibert, J.-F.4
  • 20
    • 84901819995 scopus 로고    scopus 로고
    • Morse decomposition for delay-differential equations with positive feedback
    • to appear
    • M. Polner, Morse decomposition for delay-differential equations with positive feedback, Nonlinear Anal., (to appear).
    • Nonlinear Anal.
    • Polner, M.1
  • 21
    • 0003195186 scopus 로고
    • The 2-dimensional attractor of ẋ(t) = -μx(t) + f(x(t - 1))
    • Amer. Math. Soc., Providence, RI
    • H.O. Walther, The 2-dimensional attractor of ẋ(t) = -μx(t) + f(x(t - 1)), Memoirs of the Amer. Math. Soc., Vol. 544, Amer. Math. Soc., Providence, RI, 1995.
    • (1995) Memoirs of the Amer. Math. Soc. , vol.544
    • Walther, H.O.1
  • 22
    • 40449129613 scopus 로고    scopus 로고
    • The singularities of an attractor of a delay differential equation
    • H.-O. Walther, The singularities of an attractor of a delay differential equation, Functional Differential Equations, 5 (1998), 513-548.
    • (1998) Functional Differential Equations , vol.5 , pp. 513-548
    • Walther, H.-O.1
  • 23
    • 3042583879 scopus 로고    scopus 로고
    • Smoothness of the attractor of almost all solutions of a delay differential equation
    • H.-O. Walther and M. Yebdri, Smoothness of the attractor of almost all solutions of a delay differential equation, Dissertationes Mathematicae 368, 1997.
    • (1997) Dissertationes Mathematicae , vol.368
    • Walther, H.-O.1    Yebdri, M.2
  • 24
    • 33646864830 scopus 로고    scopus 로고
    • Symmetric functional differential equations and neural networks with memory
    • J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.
    • (1998) Trans. Amer. Math. Soc. , vol.350 , pp. 4799-4838
    • Wu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.