-
2
-
-
0035369682
-
-
Whitesides, G. M.; Stroock, A. D.Phys. Today 2001, 54, 42. Pfohl, T.; Mugele, F.; Seemann, R.; Herminghaus, S. ChemPhysChem 2003, 4, 1291.
-
(2001)
Phys. Today
, vol.54
, pp. 42
-
-
Whitesides, G.M.1
Stroock, A.D.2
-
3
-
-
0346101649
-
-
Whitesides, G. M.; Stroock, A. D.Phys. Today 2001, 54, 42. Pfohl, T.; Mugele, F.; Seemann, R.; Herminghaus, S. ChemPhysChem 2003, 4, 1291.
-
(2003)
ChemPhysChem
, vol.4
, pp. 1291
-
-
Pfohl, T.1
Mugele, F.2
Seemann, R.3
Herminghaus, S.4
-
4
-
-
0034157362
-
-
Jakeway, S. C.; de Mello, A. J.; Russell, E. L. Fresenius' J. Anal. Chem. 2000, 366, 325-539.
-
(2000)
Fresenius' J. Anal. Chem.
, vol.366
, pp. 325-539
-
-
Jakeway, S.C.1
De Mello, A.J.2
Russell, E.L.3
-
5
-
-
0035846985
-
-
Prins, M. W. J.; Welters, W. J. J.; Weekamp, J. W. Science 2001, 291, 277.
-
(2001)
Science
, vol.291
, pp. 277
-
-
Prins, M.W.J.1
Welters, W.J.J.2
Weekamp, J.W.3
-
6
-
-
0001047405
-
-
Pollack, M. G.; Fair, R. B.; Shenderov, A. D. Appl. Phys. Lett. 2000, 77, 1725-1726.
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 1725-1726
-
-
Pollack, M.G.1
Fair, R.B.2
Shenderov, A.D.3
-
7
-
-
0000339253
-
-
Sandre, O.; Gorre-Talini, L.; Ajdari, A.; Frost, J.; Silberzan, P. Phys. Rev. E 1999, 60, 2964-2972.
-
(1999)
Phys. Rev. E
, vol.60
, pp. 2964-2972
-
-
Sandre, O.1
Gorre-Talini, L.2
Ajdari, A.3
Frost, J.4
Silberzan, P.5
-
8
-
-
0001578230
-
-
Jones, T. B.; Gunji, M.; Washizu, M.; Feldman, M. J. J. Appl. Phys. 2001, 89, 1441-1448.
-
(2001)
J. Appl. Phys.
, vol.89
, pp. 1441-1448
-
-
Jones, T.B.1
Gunji, M.2
Washizu, M.3
Feldman, M.J.4
-
9
-
-
0037301514
-
-
Cho, S. K.; Moon, H.; Kim, C.-J. J. Microelectromech. Syst. 2003, 12, 70-80.
-
(2003)
J. Microelectromech. Syst.
, vol.12
, pp. 70-80
-
-
Cho, S.K.1
Moon, H.2
Kim, C.-J.3
-
11
-
-
0012637388
-
-
Pollack, M. G.; Shenderov, A. D.; Fair, R. B. Lab Chip 2002, 2, 96-101.
-
(2002)
Lab Chip
, vol.2
, pp. 96-101
-
-
Pollack, M.G.1
Shenderov, A.D.2
Fair, R.B.3
-
12
-
-
0037491131
-
-
Klingner, A.; Herminghaus, S.; Mugele, F.Appl. Phys. Lett. 2003, 82, 4187-4189.
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 4187-4189
-
-
Klingner, A.1
Herminghaus, S.2
Mugele, F.3
-
13
-
-
4043096956
-
-
Teflon AF, Amorphous Fluoropolymer, DuPont, P.O. Box 80702, Wilmington, DE 19880-0702
-
Teflon AF, Amorphous Fluoropolymer, DuPont, P.O. Box 80702, Wilmington, DE 19880-0702.
-
-
-
-
15
-
-
4043089904
-
-
note
-
LabView Graphical Programming for Instrumentation from National Instruments.
-
-
-
-
17
-
-
0001191102
-
-
Garton, C. G.; Krasucki, Z. Proc. R. Soc. (London), Ser. A 1964, 280, 211-226.
-
(1964)
Proc. R. Soc. (London), Ser. A
, vol.280
, pp. 211-226
-
-
Garton, C.G.1
Krasucki, Z.2
-
18
-
-
4043069923
-
-
note
-
In fact, the snap on of the capillary bridge should occur at a slightly larger distance when the liquid surfaces become unstable due to their mutual van der Waals attraction. However, this critical distance is of the order of a few nanometers and is not resolved in the present experiments.
-
-
-
-
20
-
-
4043174850
-
-
note
-
The prefactor for the normalization arises naturally from eq 1 (The additional factor 2 in the denominator is due to the presence of two insulating layers in series.) and represents the ratio of electrical forces over capillary forces.
-
-
-
-
21
-
-
4043170585
-
-
note
-
For 0.25 < U < 1, the contact angle upon rupture is well below 90° and the capillary bridge breaks symmetrically. For U < 0.25, θ is close to or even larger than 90°, In this case another instability mode dominates and the bridge ruptures asymmetrically, leaving a larger droplet on the bottom electrode. Apparently, this rupture mode or the competition between the two modes is affected by the electric field in a different way than the symmetric mode.
-
-
-
-
22
-
-
0001703290
-
-
Vallet, M.; Vallade, M.; Berge, B. Eur. Phys. J. B 1999, 11, 583-591.
-
(1999)
Eur. Phys. J. B
, vol.11
, pp. 583-591
-
-
Vallet, M.1
Vallade, M.2
Berge, B.3
-
23
-
-
4043122558
-
-
note
-
The applied voltage in this region is typically around 1 kV or beyond, which is well within the saturation regime of electrowetting. After the experiment, the contact angle at zero voltage is typically reduced below 90°, which is a clear indication of surface degradation.
-
-
-
-
25
-
-
4043169163
-
-
note
-
1/6.
-
-
-
-
26
-
-
0141973566
-
-
Additional field-induced effects are limited to a region of diameter δ around the contact line. For details, see: Buehrle, J.; Herminghaus, S.; Mugele, F. Phys. Rev. Lett. 2003, 91, 086101.
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 086101
-
-
Buehrle, J.1
Herminghaus, S.2
Mugele, F.3
-
29
-
-
4043058658
-
-
note
-
In the case of asymmetric rupture, we always found the larger droplet on the bottom electrode. This symmetry breaking was the clearest manifestation of gravity throughout the experiments. We also note that gravity increases the range of contact angles that is dominated by the asymmetric instability mode.
-
-
-
-
31
-
-
4043172021
-
-
note
-
In the present experiments, we found that the pressure of the capillary bridges (as determined from the mean curvature) was always positive; that is, the bridges are unduloids. During spreading, the pressure increased roughly by a factor of 2.
-
-
-
-
32
-
-
4043119767
-
-
note
-
Note that the free energy is only one particular choice for the functional to be minimized.
-
-
-
-
33
-
-
4043174851
-
-
note
-
We neglected the minor contribution due to the insulating layers.
-
-
-
|