메뉴 건너뛰기




Volumn , Issue , 2006, Pages 225-230

Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data

Author keywords

[No Author keywords available]

Indexed keywords

DATA ACQUISITION; DIAGNOSIS; DISEASES; MEDICAL PROBLEMS;

EID: 40349108881     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2006.22     Document Type: Conference Paper
Times cited : (18)

References (23)
  • 2
    • 2342554361 scopus 로고    scopus 로고
    • A Comparison of Neural Networks and Support Vector Machines for Recognizing Young-Old Gait Patterns
    • R. Begg, J. Kamruzzaman, "A Comparison of Neural Networks and Support Vector Machines for Recognizing Young-Old Gait Patterns", Proceeding of IEEE TENCONConference, 2003, pp. 354-358
    • (2003) Proceeding of IEEE TENCONConference , pp. 354-358
    • Begg, R.1    Kamruzzaman, J.2
  • 5
    • 0034745195 scopus 로고    scopus 로고
    • Potential of the Genetic Algorithm Neural Network in the Assessment of Gait Patterns in Ankle Arthrodesis
    • W. Wu, F. Su, Y. Cheng, Y. Chou, "Potential of the Genetic Algorithm Neural Network in the Assessment of Gait Patterns in Ankle Arthrodesis", Annals of Biomedical Engineering, 29, 2001, pp. 83-91
    • (2001) Annals of Biomedical Engineering , vol.29 , pp. 83-91
    • Wu, W.1    Su, F.2    Cheng, Y.3    Chou, Y.4
  • 6
    • 0030940066 scopus 로고    scopus 로고
    • An application of neural networks for distinguishing gait patterns on the basis of hip-knee joint angle diagrams
    • J. G. Barton, A. Lees, "An application of neural networks for distinguishing gait patterns on the basis of hip-knee joint angle diagrams", Gait & Posture, 5, 1997, pp. 28-33
    • (1997) Gait & Posture , vol.5 , pp. 28-33
    • Barton, J.G.1    Lees, A.2
  • 12
    • 0035694609 scopus 로고    scopus 로고
    • Gait Recognition from Time-Normalized Joint-Angle Trajectories in the Walking Plane
    • R. Tanawongsuwan, A. Bobick, "Gait Recognition from Time-Normalized Joint-Angle Trajectories in the Walking Plane", CVPR, 2001, pp. 726-735
    • (2001) CVPR , pp. 726-735
    • Tanawongsuwan, R.1    Bobick, A.2
  • 13
    • 0031636151 scopus 로고    scopus 로고
    • A case study on bagging, boosting and basic ensembles of neural networks for OCR
    • J. Mao, 'A case study on bagging, boosting and basic ensembles of neural networks for OCR", Proceeding of IJCNN-98, 3, 1998, pp. 1828-1833
    • (1998) Proceeding of IJCNN-98 , vol.3 , pp. 1828-1833
    • Mao, J.1
  • 14
    • 0029313010 scopus 로고
    • Ensemble competitive learning neural networks with reduced input dimension
    • J. Kim, J. Ahn., S. Cho, "Ensemble competitive learning neural networks with reduced input dimension", Int J Neural Syst., 1995, pp 133-42
    • (1995) Int J Neural Syst , pp. 133-142
    • Kim, J.1    Ahn, J.2    Cho, S.3
  • 15
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural networks
    • A. J. C. Sharkey, "On combining artificial neural networks", Connection Science, 8, 1996, pp 299-314
    • (1996) Connection Science , vol.8 , pp. 299-314
    • Sharkey, A.J.C.1
  • 16
    • 84947596646 scopus 로고    scopus 로고
    • Types of multinet system
    • Springer-Verlag, Berlin Heidelberg
    • A. J. C. Sharkey, "Types of multinet system", Lecture Notes in Computer Science, Vol. 2364. Springer-Verlag, Berlin Heidelberg, 2002, pp. 108-117
    • (2002) Lecture Notes in Computer Science , vol.2364 , pp. 108-117
    • Sharkey, A.J.C.1
  • 19
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z. H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: many could be better than all", Artificial Intelligence, 2002, pp.239-263,
    • (2002) Artificial Intelligence , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 21
    • 0003979410 scopus 로고    scopus 로고
    • What size neural network gives optimal generalization? Convergence properties of backpropagation, Technical Report UMIACS-TR-96-22 and CS-TR-3617
    • S. Lawrence, CL. Giles, and A.C. Tsoi, "What size neural network gives optimal generalization? Convergence properties of backpropagation", Technical Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer Studies, University of Maryland
    • Institute for Advanced Computer Studies, University of Maryland
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.