메뉴 건너뛰기




Volumn 98, Issue 3, 2008, Pages 259-272

Mathematical properties of neuronal TD-rules and differential Hebbian learning: A comparison

Author keywords

Correlation based learning; Differential Hebbian learning; Reinforcement learning; Temporal difference learning

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; CORRELATION METHODS; MATHEMATICAL MORPHOLOGY; NEURAL NETWORKS; TEMPORAL LOGIC;

EID: 40149107540     PISSN: 03401200     EISSN: 14320770     Source Type: Journal    
DOI: 10.1007/s00422-007-0209-6     Document Type: Article
Times cited : (12)

References (56)
  • 1
    • 0034276719 scopus 로고    scopus 로고
    • Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity
    • 3
    • Arleo A, Gerstner W (2000) Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol Cybern 83(3): 287-299
    • (2000) Biol Cybern , vol.83 , pp. 287-299
    • Arleo, A.1    Gerstner, W.2
  • 3
    • 0034928712 scopus 로고    scopus 로고
    • Synaptic modification by correlated activity: Hebb's postulate revisited
    • Bi GQ, Poo M (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24: 139-166
    • (2001) Annu Rev Neurosci , vol.24 , pp. 139-166
    • Bi, G.Q.1    Poo, M.2
  • 4
    • 0038393252 scopus 로고    scopus 로고
    • Derivatives of the dirac delta function by explicit construction of sequences
    • 5
    • Boykina TB (2003) Derivatives of the dirac delta function by explicit construction of sequences. Am J Phys 71(5): 462-468
    • (2003) Am J Phys , vol.71 , pp. 462-468
    • Boykina, T.B.1
  • 5
    • 0000430514 scopus 로고
    • The convergence of TD(λ)
    • 3/4
    • Dayan P (1992) The convergence of TD(λ). Mach Learn 8(3/4): 341-362
    • (1992) Mach Learn , vol.8 , pp. 341-362
    • Dayan, P.1
  • 7
    • 0028388685 scopus 로고
    • TD(λ) converges with probability 1
    • Dayan P, Seynowski T (1994) TD(λ) converges with probability 1. Mach Learn 14: 295-301
    • (1994) Mach Learn , vol.14 , pp. 295-301
    • Dayan, P.1    Seynowski, T.2
  • 8
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • Florian RV (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput 19: 1468-1502
    • (2007) Neural Comput , vol.19 , pp. 1468-1502
    • Florian, R.V.1
  • 9
    • 0033968832 scopus 로고    scopus 로고
    • A model of hippocampally dependent navigation, using the temporal difference learning rule
    • Foster DJ, Morris RGM, Dayan P (2000) A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10: 1-16
    • (2000) Hippocampus , vol.10 , pp. 1-16
    • Foster, D.J.1    Morris, R.G.M.2    Dayan, P.3
  • 10
    • 0029821128 scopus 로고    scopus 로고
    • A neuronal learning rule for sub-millisecond temporal coding
    • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76-78
    • (1996) Nature , vol.383 , pp. 76-78
    • Gerstner, W.1    Kempter, R.2    Van Hemmen, J.L.3    Wagner, H.4
  • 11
    • 0002418333 scopus 로고
    • The problem of stimulus equivalence in behavior theory
    • Hull CL (1939) The problem of stimulus equivalence in behavior theory. Psychol Rev 46: 9-30
    • (1939) Psychol Rev , vol.46 , pp. 9-30
    • Hull, C.L.1
  • 13
    • 0346096511 scopus 로고    scopus 로고
    • Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain
    • 6968
    • Humeau Y, Shaban H, Bissiere S, Luthi A (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426(6968): 841-845
    • (2003) Nature , vol.426 , pp. 841-845
    • Humeau, Y.1    Shaban, H.2    Bissiere, S.3    Luthi, A.4
  • 16
    • 0003900353 scopus 로고
    • Brain function and adaptive systems-a heterostatic theory
    • Technical report Defense Technical Information Center, Cameron Station, Alexandria, VA 22304
    • Klopf AH (1972) Brain function and adaptive systems-a heterostatic theory. Technical report, Air Force Cambridge Research Laboratories Special Report No. 133, Defense Technical Information Center, Cameron Station, Alexandria, VA 22304
    • (1972) Air Force Cambridge Research Laboratories Special Report No. 133
    • Klopf, A.H.1
  • 18
    • 0042276164 scopus 로고
    • A drive-reinforcement model of single neuron function
    • Denker JS (ed) American Institute of Physics, New York
    • Klopf AH (1986) A drive-reinforcement model of single neuron function. In: Denker JS (ed) Neural networks for computing: AIP Conference Proceedings. American Institute of Physics, New York, vol 151
    • (1986) Neural Networks for Computing: AIP Conference Proceedings , vol.151
    • Klopf, A.H.1
  • 19
    • 0023878618 scopus 로고
    • A neuronal model of classical conditioning
    • 2
    • Klopf AH (1988) A neuronal model of classical conditioning. Psychobiology 16(2): 85-123
    • (1988) Psychobiology , vol.16 , pp. 85-123
    • Klopf, A.H.1
  • 22
    • 0042276165 scopus 로고
    • Differential Hebbian learning
    • Denker JS (eds) American Institute of Physics, New York
    • Kosco B (1986) Differential Hebbian learning. In: Denker JS (eds) Neural networks for computing: AIP Conference proceedings, American Institute of Physics, New York, vol 151
    • (1986) Neural Networks for Computing: AIP Conference Proceedings , vol.151
    • Kosco, B.1
  • 23
    • 23444445493 scopus 로고    scopus 로고
    • Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions
    • Krichmar JL, Seth AK, Nitz DA, Fleischer JG, Edelman GM (2005) Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics 3: 197-222
    • (2005) Neuroinformatics , vol.3 , pp. 197-222
    • Krichmar, J.L.1    Seth, A.K.2    Nitz, D.A.3    Fleischer, J.G.4    Edelman, G.M.5
  • 25
    • 0031012390 scopus 로고    scopus 로고
    • A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons
    • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275: 209-213
    • (1997) Science , vol.275 , pp. 209-213
    • Magee, J.C.1    Johnston, D.2
  • 27
    • 0031012615 scopus 로고    scopus 로고
    • Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
    • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213-215
    • (1997) Science , vol.275 , pp. 213-215
    • Markram, H.1    Lübke, J.2    Frotscher, M.3    Sakmann, B.4
  • 28
    • 0019813929 scopus 로고
    • Mesencephalic dopaminergic unit activity in the behaviorally conditioned rat
    • Miller JD, Sanghera MK, German DC (1981) Mesencephalic dopaminergic unit activity in the behaviorally conditioned rat. Life Sci 29: 1255-1263
    • (1981) Life Sci , vol.29 , pp. 1255-1263
    • Miller, J.D.1    Sanghera, M.K.2    German, D.C.3
  • 29
    • 0028972278 scopus 로고
    • Bee foraging in uncertain environments using predictive hebbian learning
    • Montague PR, Dayan P, Person C, Sejnowski TJ (1995) Bee foraging in uncertain environments using predictive hebbian learning. Nature 377: 725-728
    • (1995) Nature , vol.377 , pp. 725-728
    • Montague, P.R.1    Dayan, P.2    Person, C.3    Sejnowski, T.J.4
  • 30
    • 0029981543 scopus 로고    scopus 로고
    • A framework for mesencephalic dopamine systems based on predictive hebbian learning
    • 5
    • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive hebbian learning. J Neurosci 16(5): 1936-1947
    • (1996) J Neurosci , vol.16 , pp. 1936-1947
    • Montague, P.R.1    Dayan, P.2    Sejnowski, T.J.3
  • 31
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning
    • Pfister JP, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Comput 18: 1309-1339
    • (2006) Neural Comput , vol.18 , pp. 1309-1339
    • Pfister, J.P.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 32
    • 0037686661 scopus 로고    scopus 로고
    • Isotropic sequence order learning
    • Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15: 831-864
    • (2003) Neural Comput , vol.15 , pp. 831-864
    • Porr, B.1    Wörgötter, F.2
  • 33
    • 33646781302 scopus 로고    scopus 로고
    • Strongly improved stability and faster convergence of temporal sequence learning by utilising input correlations only
    • Porr B, Wörgötter F (2006) Strongly improved stability and faster convergence of temporal sequence learning by utilising input correlations only. Neural Comput 18: 1380-1412
    • (2006) Neural Comput , vol.18 , pp. 1380-1412
    • Porr, B.1    Wörgötter, F.2
  • 34
    • 35549002871 scopus 로고    scopus 로고
    • Learning with "relevance": Using a third factor to stabilise hebbian learning
    • in press
    • Porr B, Wörgötter F (2007) Learning with "relevance": Using a third factor to stabilise hebbian learning. Neural Comput (in press)
    • (2007) Neural Comput
    • Porr, B.1    Wörgötter, F.2
  • 35
    • 0038362695 scopus 로고    scopus 로고
    • ISO-learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm
    • Porr B, von Ferber C, Wörgötter F (2003) ISO-learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm. Neural Comput 15: 865-884
    • (2003) Neural Comput , vol.15 , pp. 865-884
    • Porr, B.1    Von Ferber, C.2    Wörgötter, F.3
  • 36
    • 0032696609 scopus 로고    scopus 로고
    • Computational consequences of temporally asymmetric learning rules: I. differential hebbian learning
    • 3
    • Roberts P (1999) Computational consequences of temporally asymmetric learning rules: I. differential hebbian learning. J Comput Neurosci 7(3): 235-46
    • (1999) J Comput Neurosci , vol.7 , pp. 235-46
    • Roberts, P.1
  • 38
    • 0742324114 scopus 로고    scopus 로고
    • How the shape of pre- and postsynaptic signals can influence STDP: A biophysical model
    • Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comp 16: 595-626
    • (2004) Neural Comp , vol.16 , pp. 595-626
    • Saudargiene, A.1    Porr, B.2    Wörgötter, F.3
  • 39
    • 0031867046 scopus 로고    scopus 로고
    • Predictive reward signal of dopamine neurons
    • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1-27
    • (1998) J Neurophysiol , vol.80 , pp. 1-27
    • Schultz, W.1
  • 40
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593-1599
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 41
    • 0029753630 scopus 로고    scopus 로고
    • Reinforcement learning with replacing eligibility traces
    • Singh SP, Sutton RS (1996) Reinforcement learning with replacing eligibility traces. Mach Learn 22: 123-158
    • (1996) Mach Learn , vol.22 , pp. 123-158
    • Singh, S.P.1    Sutton, R.S.2
  • 42
    • 27844473821 scopus 로고    scopus 로고
    • Robust self-localisation and navigation based on hippocampal place cells
    • 9
    • Strösslin T, Sheynikhovich D, Chavarriaga R, Gerstner W (2005) Robust self-localisation and navigation based on hippocampal place cells. Neural Netw 18(9): 1125-1140
    • (2005) Neural Netw , vol.18 , pp. 1125-1140
    • Strösslin, T.1    Sheynikhovich, D.2    Chavarriaga, R.3    Gerstner, W.4
  • 43
    • 0036592034 scopus 로고    scopus 로고
    • TD models of reward predictive responses in Dopamine neurons
    • 4-6
    • Suri RE (2002) TD models of reward predictive responses in Dopamine neurons. Neural Netw 15(4-6): 523-533
    • (2002) Neural Netw , vol.15 , pp. 523-533
    • Suri, R.E.1
  • 44
    • 0031854385 scopus 로고    scopus 로고
    • Learning of sequential movements by neural network model with dopamine-like reinforcement signal
    • Suri RE, Schultz W (1998) Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp Brain Res 121: 350-354
    • (1998) Exp Brain Res , vol.121 , pp. 350-354
    • Suri, R.E.1    Schultz, W.2
  • 45
    • 0032930935 scopus 로고    scopus 로고
    • A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task
    • 3
    • Suri RE, Schultz W (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neurosci 91(3): 871-890
    • (1999) Neurosci , vol.91 , pp. 871-890
    • Suri, R.E.1    Schultz, W.2
  • 46
    • 0035315989 scopus 로고    scopus 로고
    • Temporal difference model reproduces anticipatory neural activity
    • 4
    • Suri RE, Schultz W (2001) Temporal difference model reproduces anticipatory neural activity. Neural Comp 13(4): 841-62
    • (2001) Neural Comp , vol.13 , pp. 841-62
    • Suri, R.E.1    Schultz, W.2
  • 47
    • 0035961179 scopus 로고    scopus 로고
    • Modeling functions of striatal dopamine modulation in learning and planning
    • 1
    • Suri RE, Bargas J, Arbib MA (2001) Modeling functions of striatal dopamine modulation in learning and planning. Neurosci 103(1): 65-85
    • (2001) Neurosci , vol.103 , pp. 65-85
    • Suri, R.E.1    Bargas, J.2    Arbib, M.A.3
  • 48
    • 0019537951 scopus 로고
    • Towards a modern theory of adaptive networks: Expectation and prediction
    • Sutton R, Barto A (1981) Towards a modern theory of adaptive networks: Expectation and prediction. Psychol Rev 88: 135-170
    • (1981) Psychol Rev , vol.88 , pp. 135-170
    • Sutton, R.1    Barto, A.2
  • 49
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • Sutton RS (1988) Learning to predict by the methods of temporal differences. Mach Learn 3: 9-44
    • (1988) Mach Learn , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 52
    • 0037321236 scopus 로고    scopus 로고
    • Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat
    • 3
    • Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol 546(3): 665-675
    • (2003) J Physiol , vol.546 , pp. 665-675
    • Tsukamoto, M.1    Yasui, T.2    Yamada, M.K.3    Nishiyama, N.4    Matsuki, N.5    Ikegaya, Y.6
  • 54
    • 34249833101 scopus 로고
    • Technical note: Q-Learning
    • Watkins CJCH, Dayan P (1992) Technical note: Q-Learning. Mach Learn 8: 279-292
    • (1992) Mach Learn , vol.8 , pp. 279-292
    • Cjch, W.1    Dayan, P.2
  • 55
    • 0017524329 scopus 로고
    • An adaptive optimal controller for discrete-time Markov environments
    • Witten IH (1977) An adaptive optimal controller for discrete-time Markov environments. Inf Control 34: 86-295
    • (1977) Inf Control , vol.34 , pp. 86-295
    • Witten, I.H.1
  • 56
    • 13244267004 scopus 로고    scopus 로고
    • Temporal sequence learning for prediction and control - A review of different models and their relation to biological mechanisms
    • Wörgötter F, Porr B (2005) Temporal sequence learning for prediction and control - a review of different models and their relation to biological mechanisms. Neural Comput 17: 245-319
    • (2005) Neural Comput , vol.17 , pp. 245-319
    • Wörgötter, F.1    Porr, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.