메뉴 건너뛰기




Volumn 38, Issue 3, 2008, Pages 379-390

Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model

Author keywords

Adaptive mixtures method; Multiple sclerosis; Segmentation

Indexed keywords

BAYESIAN NETWORKS; MARKOV PROCESSES; PROBABILITY;

EID: 39549119121     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2007.12.005     Document Type: Article
Times cited : (144)

References (32)
  • 1
  • 2
    • 0029377853 scopus 로고
    • Model-based 3D segmentation of multiple sclerosis lesions in magnetic resonance brain images
    • Kamber M., Shinghal R., Collins D.L., Francis G.S., and Evans A.C. Model-based 3D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans. Med. Imag. 14 (1995) 442-453
    • (1995) IEEE Trans. Med. Imag. , vol.14 , pp. 442-453
    • Kamber, M.1    Shinghal, R.2    Collins, D.L.3    Francis, G.S.4    Evans, A.C.5
  • 3
    • 0030126711 scopus 로고    scopus 로고
    • Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI
    • Johnston B., Atkins M.S., Mackiewich B., and Anderson M. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans. Med. Imag. 15 (1996) 154-169
    • (1996) IEEE Trans. Med. Imag. , vol.15 , pp. 154-169
    • Johnston, B.1    Atkins, M.S.2    Mackiewich, B.3    Anderson, M.4
  • 4
    • 0000013152 scopus 로고
    • On the Statistical analysis of dirty pictures
    • Besag J. On the Statistical analysis of dirty pictures. J. R. Statist. Soc. 48 (1986) 259-302
    • (1986) J. R. Statist. Soc. , vol.48 , pp. 259-302
    • Besag, J.1
  • 5
    • 0030145389 scopus 로고    scopus 로고
    • Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation
    • Udupa J.K., and Samarasekera S. Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graphical Models Image Process. 58 (1996) 246-261
    • (1996) Graphical Models Image Process. , vol.58 , pp. 246-261
    • Udupa, J.K.1    Samarasekera, S.2
  • 7
    • 0345134269 scopus 로고    scopus 로고
    • F. Admasu, S. Al-Zubi, K. Toennies, N. Bodammer, H. Hinrichs, Segmentation of multiple sclerosis lesions from MR brain images using the principles of fuzzy-connectedness and artificial neuron networks, in: IEEE Proceedings of International Conference on Image Processing, ICIP 2003, Barcelona, Catalonia, Spain, 2003, pp. 1081-1084.
    • F. Admasu, S. Al-Zubi, K. Toennies, N. Bodammer, H. Hinrichs, Segmentation of multiple sclerosis lesions from MR brain images using the principles of fuzzy-connectedness and artificial neuron networks, in: IEEE Proceedings of International Conference on Image Processing, ICIP 2003, Barcelona, Catalonia, Spain, 2003, pp. 1081-1084.
  • 9
    • 0005941583 scopus 로고    scopus 로고
    • P. Blonda, G. Satalino, A. Baraldi, R. De Blasi, Segmentation of multiple sclerosis lesions in MRI by fuzzy neural networks: FLVQ and FOSART, in: Fuzzy Information Processing Society-NAFIPS, 1998, pp. 39-43.
    • P. Blonda, G. Satalino, A. Baraldi, R. De Blasi, Segmentation of multiple sclerosis lesions in MRI by fuzzy neural networks: FLVQ and FOSART, in: Fuzzy Information Processing Society-NAFIPS, 1998, pp. 39-43.
  • 13
    • 0033973476 scopus 로고    scopus 로고
    • Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering
    • Boudraa A.O., Dehakb S.M.R., Zhu Y.M., Pachai C., Bao Y.G., and Grimaud J. Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Comput. Biol. Med. 30 (2000) 23-40
    • (2000) Comput. Biol. Med. , vol.30 , pp. 23-40
    • Boudraa, A.O.1    Dehakb, S.M.R.2    Zhu, Y.M.3    Pachai, C.4    Bao, Y.G.5    Grimaud, J.6
  • 15
    • 39549094541 scopus 로고    scopus 로고
    • J.M. Nett. The study of MS using MRI, image processing, and visualization. M.Sc. Thesis, University of Louisville, 2001.
    • J.M. Nett. The study of MS using MRI, image processing, and visualization. M.Sc. Thesis, University of Louisville, 2001.
  • 16
    • 0036447876 scopus 로고    scopus 로고
    • E. Ardizzone, R. Pirrone, O. Gambino, D. Peri, Two channels fuzzy c-means detection of multiple sclerosis lesions in multispectral MR images, in: International Conference on Image Processing, 2002, pp. 345-348.
    • E. Ardizzone, R. Pirrone, O. Gambino, D. Peri, Two channels fuzzy c-means detection of multiple sclerosis lesions in multispectral MR images, in: International Conference on Image Processing, 2002, pp. 345-348.
  • 19
    • 39549084391 scopus 로고    scopus 로고
    • R. Khayati, Quantification of multiple sclerosis lesions based on fractal analysis. Ph.D. Thesis, Technical Report no. 2: automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model, Amirkabir University of Technology, 2007.
    • R. Khayati, Quantification of multiple sclerosis lesions based on fractal analysis. Ph.D. Thesis, Technical Report no. 2: automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model, Amirkabir University of Technology, 2007.
  • 21
    • 39549117875 scopus 로고    scopus 로고
    • R.R. Edelman, J.R. Hesselink, M.B. Zlatkin, J.V. Crues, Clinical Magnetic Resonance Imaging, vol. 2, third ed., 2006, pp.1571-1615.
    • R.R. Edelman, J.R. Hesselink, M.B. Zlatkin, J.V. Crues, Clinical Magnetic Resonance Imaging, vol. 2, third ed., 2006, pp.1571-1615.
  • 22
    • 39549091152 scopus 로고    scopus 로고
    • R. Khayati, Quantification of multiple sclerosis lesions based on fractal analysis. Ph.D. Thesis, Technical Report no. 1: fully automatic object oriented brain segmentation in MRI, Amirkabir University of Technology, 2006.
    • R. Khayati, Quantification of multiple sclerosis lesions based on fractal analysis. Ph.D. Thesis, Technical Report no. 1: fully automatic object oriented brain segmentation in MRI, Amirkabir University of Technology, 2006.
  • 28
    • 0028724624 scopus 로고
    • Morphometric analysis of white matter lesions in MR images: method and validation
    • Zijdenbos A.P., Dawant B.M., Margolin R.A., and Palmer A.C. Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imag. 13 (1994) 716-724
    • (1994) IEEE Trans. Med. Imag. , vol.13 , pp. 716-724
    • Zijdenbos, A.P.1    Dawant, B.M.2    Margolin, R.A.3    Palmer, A.C.4
  • 29
    • 0033646213 scopus 로고    scopus 로고
    • Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data
    • Stokking R., Vincken K.L., and Viergever M.A. Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage 12 (2000) 726-738
    • (2000) NeuroImage , vol.12 , pp. 726-738
    • Stokking, R.1    Vincken, K.L.2    Viergever, M.A.3
  • 30
    • 0026045948 scopus 로고
    • Measurement and reliability: statistical thinking considerations
    • Bartko J.J. Measurement and reliability: statistical thinking considerations. Schizophrenia Bull. 17 (1991) 483-489
    • (1991) Schizophrenia Bull. , vol.17 , pp. 483-489
    • Bartko, J.J.1
  • 31
    • 0036826508 scopus 로고    scopus 로고
    • Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis
    • Zijdenbos A.P., Forghani R., and Evans A.C. Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med. Imag. 21 (2002) 1280-1291
    • (2002) IEEE Trans. Med. Imag. , vol.21 , pp. 1280-1291
    • Zijdenbos, A.P.1    Forghani, R.2    Evans, A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.