메뉴 건너뛰기




Volumn 118, Issue 4, 2008, Pages 649-680

Asymptotic properties of particle filter-based maximum likelihood estimators for state space models

Author keywords

Asymptotic normality; Consistency; Hidden Markov model; Maximum likelihood; Particle filter; Sequential Monte Carlo methods; State space models

Indexed keywords

ASYMPTOTIC ANALYSIS; INTERPOLATION; MARKOV PROCESSES; MAXIMUM LIKELIHOOD; MONTE CARLO METHODS; PARAMETER ESTIMATION;

EID: 39149122537     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spa.2007.05.007     Document Type: Article
Times cited : (20)

References (32)
  • 1
    • 0032329029 scopus 로고    scopus 로고
    • Asymptotic normality of the maximum likelihood estimator for general hidden Markov models
    • Bickel P., Ritov Y., and Rydén T. Asymptotic normality of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 26 (1998) 1614-1635
    • (1998) Ann. Statist. , vol.26 , pp. 1614-1635
    • Bickel, P.1    Ritov, Y.2    Rydén, T.3
  • 2
    • 0001821084 scopus 로고    scopus 로고
    • Particle filters-a theoretical perspective
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • Crisan D. Particle filters-a theoretical perspective. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York 17-41
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 17-41
    • Crisan, D.1
  • 3
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering methods for practitioners
    • Crisan D., and Doucet A. A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50 (2002) 736-746
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 736-746
    • Crisan, D.1    Doucet, A.2
  • 4
    • 0036900791 scopus 로고    scopus 로고
    • On the convergence of the Monte Carlo maximum likelihood method for latent variable models
    • Cappé O., Douc R., Moulines É., and Robert C. On the convergence of the Monte Carlo maximum likelihood method for latent variable models. Scand. J. Statist. 29 (2002) 615-635
    • (2002) Scand. J. Statist. , vol.29 , pp. 615-635
    • Cappé, O.1    Douc, R.2    Moulines, É.3    Robert, C.4
  • 5
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for stochastic volatility models
    • Chib S., Nardari F., and Shephard N. Markov chain Monte Carlo methods for stochastic volatility models. J. Econometrics 108 (2002) 281-316
    • (2002) J. Econometrics , vol.108 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 6
    • 0004053819 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia
    • Chui C.K. Multivariate Splines (1988), Society for Industrial and Applied Mathematics, Philadelphia
    • (1988) Multivariate Splines
    • Chui, C.K.1
  • 7
    • 0024557590 scopus 로고
    • Stochastic models for heterogenous DNA sequences
    • Churchill G.A. Stochastic models for heterogenous DNA sequences. Bull. Math. Biol. 51 (1989) 79-94
    • (1989) Bull. Math. Biol. , vol.51 , pp. 79-94
    • Churchill, G.A.1
  • 9
    • 0041332886 scopus 로고    scopus 로고
    • On the stability of interacting processes with applications to filtering and genetic algorithms
    • Del Moral P., and Guionnet A. On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001) 155-194
    • (2001) Ann. Inst. H. Poincaré Probab. Statist. , vol.37 , pp. 155-194
    • Del Moral, P.1    Guionnet, A.2
  • 10
    • 0002936641 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin
    • Del Moral P., and Miclo L. Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering. Lecture Notes in Mathematics vol. 1729 (2000), Springer-Verlag, Berlin
    • (2000) Lecture Notes in Mathematics , vol.1729
    • Del Moral, P.1    Miclo, L.2
  • 11
    • 0000038252 scopus 로고    scopus 로고
    • Asymptotics of the maximum likelihood estimator for general hidden Markov models
    • Douc R., and Mathias C. Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli 7 (2001) 381-420
    • (2001) Bernoulli , vol.7 , pp. 381-420
    • Douc, R.1    Mathias, C.2
  • 12
    • 21244500381 scopus 로고    scopus 로고
    • Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime
    • Douc R., Moulines É., and Rydén T. Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Statist. 32 (2004) 2254-2304
    • (2004) Ann. Statist. , vol.32 , pp. 2254-2304
    • Douc, R.1    Moulines, É.2    Rydén, T.3
  • 13
    • 0008802221 scopus 로고    scopus 로고
    • An introduction to sequential Monte Carlo methods
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • Doucet A., de Freitas N., and Gordon N. An introduction to sequential Monte Carlo methods. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York 3-14
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 3-14
    • Doucet, A.1    de Freitas, N.2    Gordon, N.3
  • 15
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte-Carlo sampling methods for Bayesian filtering
    • Doucet A., Godsill S., and Andrieu C. On sequential Monte-Carlo sampling methods for Bayesian filtering. Stat. Comput. 10 (2000) 197-208
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 17
    • 0004694060 scopus 로고    scopus 로고
    • Approximating and maximizing the likelihood for a general state space model
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • Hürzeler M., and Künsch H. Approximating and maximizing the likelihood for a general state space model. In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York 159-175
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 159-175
    • Hürzeler, M.1    Künsch, H.2
  • 18
    • 0026206264 scopus 로고
    • Hidden Markov models for speech recognition
    • Juang B.H., and Rabiner L.R. Hidden Markov models for speech recognition. Technometrics 33 (1991) 251-272
    • (1991) Technometrics , vol.33 , pp. 251-272
    • Juang, B.H.1    Rabiner, L.R.2
  • 19
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • Barndorff-Nielsen O.E., Cox D.R., and Klüppelberg C. (Eds), Chapman and Hall, Boca Raton
    • Künsch H. State space and hidden Markov models. In: Barndorff-Nielsen O.E., Cox D.R., and Klüppelberg C. (Eds). Complex Stochastic Systems (2001), Chapman and Hall, Boca Raton 109-173
    • (2001) Complex Stochastic Systems , pp. 109-173
    • Künsch, H.1
  • 20
    • 0033889380 scopus 로고    scopus 로고
    • Exponential and geometric ergodicity in hidden Markov models
    • Le Gland F., and Mevel L. Exponential and geometric ergodicity in hidden Markov models. Math. Control Signals Systems 13 (2000) 63-93
    • (2000) Math. Control Signals Systems , vol.13 , pp. 63-93
    • Le Gland, F.1    Mevel, L.2
  • 21
    • 0001572082 scopus 로고
    • Maximum likelihood estimation for hidden Markov models
    • Leroux B.G. Maximum likelihood estimation for hidden Markov models. Stochastic Process. Appl. 40 (1992) 127-143
    • (1992) Stochastic Process. Appl. , vol.40 , pp. 127-143
    • Leroux, B.G.1
  • 23
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • Liu J., and Chen R. Blind deconvolution via sequential imputations. J. Amer. Statist. Assoc. 430 (1995) 567-576
    • (1995) J. Amer. Statist. Assoc. , vol.430 , pp. 567-576
    • Liu, J.1    Chen, R.2
  • 24
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis T.A. Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. B 44 (1982) 226-233
    • (1982) J. Roy. Statist. Soc. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 25
    • 0001567490 scopus 로고
    • Local spline approximation methods
    • Lyche T., and Schumaker L.L. Local spline approximation methods. J. Approx. Theory 15 (1975) 294-325
    • (1975) J. Approx. Theory , vol.15 , pp. 294-325
    • Lyche, T.1    Schumaker, L.L.2
  • 27
    • 39149127260 scopus 로고    scopus 로고
    • J. Olsson, O. Cappé, R. Douc, É. Moulines, Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models, Technical Report, Lund University, 2006, eprint arXiv:math.ST/0609514
    • J. Olsson, O. Cappé, R. Douc, É. Moulines, Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models, Technical Report, Lund University, 2006, eprint arXiv:math.ST/0609514
  • 29
    • 39149109883 scopus 로고    scopus 로고
    • M.K. Pitt, Smooth particle filters for likelihood evaluation and maximization, Technical Report 651, Dept. Economics, Univ. Warwick, 2002
    • M.K. Pitt, Smooth particle filters for likelihood evaluation and maximization, Technical Report 651, Dept. Economics, Univ. Warwick, 2002
  • 32
    • 0000167944 scopus 로고
    • Note on the consistency of the maximum likelihood estimate
    • Wald A. Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 (1949) 394-407
    • (1949) Ann. Math. Statist. , vol.20 , pp. 394-407
    • Wald, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.