-
1
-
-
4944254361
-
Survival after treatment for breast cancer in a geographically defined population
-
Tejler G, Norberg B, Dufmats M, Nordenskjold B. Survival after treatment for breast cancer in a geographically defined population. The British Journal of Surgery 2004;91(10):1307-12
-
(2004)
The British Journal of Surgery
, vol.91
, Issue.10
, pp. 1307-1312
-
-
Tejler, G.1
Norberg, B.2
Dufmats, M.3
Nordenskjold, B.4
-
2
-
-
0037461021
-
Effective dimension reduction methods for tumor classification using gene expression data
-
Antoniadis A, Lambert-Lacroix S, Leblanc F. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 2003;19(5):563-70
-
(2003)
Bioinformatics
, vol.19
, Issue.5
, pp. 563-570
-
-
Antoniadis, A.1
Lambert-Lacroix, S.2
Leblanc, F.3
-
3
-
-
44949122001
-
Canonical correlation analysis for data reduction in data mining applied to predictive models for breast cancer recurrence
-
Razavi AR, Gill H, Ahlfeldt H, Shahsavar N. Canonical correlation analysis for data reduction in data mining applied to predictive models for breast cancer recurrence. Stud Health Technol Inform 2005;116:175-80
-
(2005)
Stud Health Technol Inform
, vol.116
, pp. 175-180
-
-
Razavi, A.R.1
Gill, H.2
Ahlfeldt, H.3
Shahsavar, N.4
-
5
-
-
0036778479
-
Decision trees: An overview and their use in medicine
-
Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. Journal of Medical Systems 2002;26(5):445-63
-
(2002)
Journal of Medical Systems
, vol.26
, Issue.5
, pp. 445-463
-
-
Podgorelec, V.1
Kokol, P.2
Stiglic, B.3
Rozman, I.4
-
6
-
-
0012854618
-
Soft discretization to enhance the continuous decision tree induction
-
In: Giraud-Carrier C, Lavrac N, Moyle S, editors. 2001; Freiburg, Germany;
-
Peng YH, Flach PA. Soft Discretization to Enhance the Continuous Decision Tree Induction. In: Giraud-Carrier C, Lavrac N, Moyle S, editors. ECML/PKDD'01 workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning; 2001; Freiburg, Germany; 2001. p. 109-118
-
(2001)
ECML/PKDD'01 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning
, pp. 109-118
-
-
Peng, Y.H.1
Flach, P.A.2
-
7
-
-
72449185049
-
Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence
-
NJ, USA: Prentice-Hall, Inc.;
-
Jang JSR, Sun CT. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.; 1997
-
(1997)
Upper Saddle River
-
-
Jsr, J.1
Sun, C.T.2
-
10
-
-
0036254780
-
Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: Statistical, neural network and fuzzy approaches
-
Seker H, Odetayo MO, Petrovic D, Naguib RN, Bartoli C, Alasio L, et al. Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: statistical, neural network and fuzzy approaches. Anticancer Research 2002;22(1A):433-8
-
(2002)
Anticancer Research
, vol.22
, Issue.1 A
, pp. 433-438
-
-
Seker, H.1
Odetayo, M.O.2
Petrovic, D.3
Naguib, R.N.4
Bartoli, C.5
Alasio, L.6
-
12
-
-
0002900899
-
Biological applications of the theory of Fuzzy sets and systems
-
1969; Boston: Little, Brown & Co.
-
Zadeh LA. Biological applications of the theory of Fuzzy sets and systems. In: Int. Symp. Biocybernetics of the Central Nervous System; 1969; Boston: Little, Brown & Co.; 1969. p. 199-212
-
(1969)
Int. Symp. Biocybernetics of the Central Nervous System
, pp. 199-212
-
-
Zadeh, L.A.1
-
15
-
-
26944458835
-
A data pre-processing method to increase efficiency and accuracy in data mining
-
In: Miksch S, Hunter J, Keravnou E, editors. 2005; Aberdeen, UK
-
Razavi AR, Gill H, Ahlfeldt H, Shahsavar N. A Data Pre-processing Method to Increase Efficiency and Accuracy in Data Mining. In: Miksch S, Hunter J, Keravnou E, editors. Proceedings of the 10th conference on Artificial Intelligence in Medicine; 2005; Aberdeen, UK; 2005. p. 434-443
-
(2005)
Proceedings of the 10th Conference on Artificial Intelligence in Medicine
, pp. 434-443
-
-
Razavi, A.R.1
Gill, H.2
Ahlfeldt, H.3
Shahsavar, N.4
|