메뉴 건너뛰기




Volumn , Issue , 2006, Pages 651-658

Assessment of a multi-strategy classifier for an embedded software system

Author keywords

Case based learning; Genetic algorithm; Multi strategy classifier; Rule based model; Software quality classification

Indexed keywords

CASE BASED LEARNING; MULTI STRATEGY CLASSIFIERS; RULE BASED MODELS; SOFTWARE QUALITY CLASSIFICATION;

EID: 38949093215     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICTAI.2006.35     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 6
    • 68549121111 scopus 로고    scopus 로고
    • C4.5 and imbalanced data sets: Investigating the effect of samplingmethod, probabilistic estimate, and decision tree structure
    • Washington DC
    • N. V. Chawla. C4.5 and imbalanced data sets: Investigating the effect of samplingmethod, probabilistic estimate, and decision tree structure. In Workshop on Learning from Imbalanced Datasets II, Washington DC, 2003. ICML.
    • (2003) Workshop on Learning from Imbalanced Datasets II
    • Chawla, N.V.1
  • 7
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • P. Domingos. Unifying instance-based and rule-based induction. Machine Learning, 24(2):141-168, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 141-168
    • Domingos, P.1
  • 10
    • 23044519492 scopus 로고    scopus 로고
    • Rainforest - a framework for fast decision tree construction of large datasets
    • J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast decision tree construction of large datasets. Data Mining and Knowledge Discovery, 4(2/3):127-162, 2000.
    • (2000) Data Mining and Knowledge Discovery , vol.4 , Issue.2-3 , pp. 127-162
    • Gehrke, J.1    Ramakrishnan, R.2    Ganti, V.3
  • 13
    • 0036891333 scopus 로고    scopus 로고
    • Using regression trees to classify fault-prone software modules
    • December
    • T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Using regression trees to classify fault-prone software modules. IEEE Transactions on Reliability, 51(4):455-462, December 2002.
    • (2002) IEEE Transactions on Reliability , vol.51 , Issue.4 , pp. 455-462
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Deng, J.3
  • 14
    • 0036529035 scopus 로고    scopus 로고
    • Predicting fault-prone modules in embedded systems using analogybased classification models
    • April, World Scientific Publishing
    • T. M. Khoshgoftaar, B. Cukic, and N. Seliya. Predicting fault-prone modules in embedded systems using analogybased classification models. International Journal of Software Engineering and Knowledge Engineering, 12(2):201-221, April 2002. World Scientific Publishing.
    • (2002) International Journal of Software Engineering and Knowledge Engineering , vol.12 , Issue.2 , pp. 201-221
    • Khoshgoftaar, T.M.1    Cukic, B.2    Seliya, N.3
  • 17
    • 85005248766 scopus 로고
    • Reasoning about evidence in causal explanations
    • St. Paul, MN, USA, August 21-26, AAAI Press, The MIT Press
    • P. Koton. Reasoning about evidence in causal explanations. In Proceedings of the 7th National Conference on Artificial Intelligence, pages 256-263, St. Paul, MN, USA, August 21-26 1988. AAAI Press / The MIT Press.
    • (1988) Proceedings of the 7th National Conference on Artificial Intelligence , pp. 256-263
    • Koton, P.1
  • 20
    • 0003441202 scopus 로고
    • R. Michalski and G. Tecuci, editors, Morgan Kaufmann
    • R. Michalski and G. Tecuci, editors. Machine Learning: A Multistrategy Approach. Morgan Kaufmann, 1994.
    • (1994) Machine Learning: A Multistrategy Approach
  • 21
    • 0042764644 scopus 로고
    • R. S. Michalski, editor, Kluwer Academic Publishers, June
    • R. S. Michalski, editor. Multistrategy Learning. Kluwer Academic Publishers, June 1993.
    • (1993) Multistrategy Learning
  • 24
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 25
    • 38949108019 scopus 로고    scopus 로고
    • J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, Proceedings of the 22nd International Conference on Very Large Databases, VLDB, pages 544-555. Morgan Kaufmann, 3-6 1996.
    • J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, Proceedings of the 22nd International Conference on Very Large Databases, VLDB, pages 544-555. Morgan Kaufmann, 3-6 1996.
  • 26
    • 84947758496 scopus 로고
    • A hybrid nearest-neighbor and nearesthyperrectangle algorithm
    • F. Bergadano and L. D. Raedt, editors, Catania, Italy, April 6-8, Springer
    • D. Wettschereck. A hybrid nearest-neighbor and nearesthyperrectangle algorithm. In F. Bergadano and L. D. Raedt, editors, Proceedings of European Conference on Machine Learning, pages 323-335, Catania, Italy, April 6-8 1994. Springer.
    • (1994) Proceedings of European Conference on Machine Learning , pp. 323-335
    • Wettschereck, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.