메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages 103-110

A neural network and fuzzy-based methodology for the prediction of work roll surface roughness in a grinding process

Author keywords

Artificial Neural Network; Back Propagation Algorithm; Fuzzy; Prediction Capability; Surface Roughness; Work Roll Grinding

Indexed keywords

ALGORITHMS; DATA STRUCTURES; FUZZY SYSTEMS; GRINDING (COMMINUTION); SURFACE ROUGHNESS;

EID: 38849126126     PISSN: 15502287     EISSN: 15502295     Source Type: Journal    
DOI: 10.1080/15502280701815382     Document Type: Article
Times cited : (4)

References (14)
  • 1
    • 0027086407 scopus 로고
    • A Neural Network Approach to the Decision-Making Process for Grinding Operations
    • M. Sakakura and I. Inasaki, A Neural Network Approach to the Decision-Making Process for Grinding Operations, Annals of the CIRP, vol. 41, no. 1, pp. 353-356, 1992.
    • (1992) Annals of the CIRP , vol.41 , Issue.1 , pp. 353-356
    • Sakakura, M.1    Inasaki, I.2
  • 2
    • 0028518773 scopus 로고
    • A Neural Network Approach for Grinding Process: Modelling and Optimization, Int. Jnl. Machine Tool Manufacturing
    • T. Warren Liao and L.J. Chen, A Neural Network Approach for Grinding Process: Modelling and Optimization, Int. Jnl. Machine Tool Manufacturing, vol. 34, no. 7, pp. 919-937, 1994.
    • (1994) , vol.34 , Issue.7 , pp. 919-937
    • Warren Liao, T.1    Chen, L.J.2
  • 3
    • 0033311722 scopus 로고    scopus 로고
    • Sensor Fusion for Monitoring and Controlling Grinding Processes, Int. Jnl. of Adv. Manufacturing Technology
    • I. Inasaki, Sensor Fusion for Monitoring and Controlling Grinding Processes, Int. Jnl. of Adv. Manufacturing Technology, vol. 15, pp. 730-736.
    • , vol.15 , pp. 730-736
    • Inasaki, I.1
  • 4
    • 14844354357 scopus 로고    scopus 로고
    • The Training of Neural Networks to Model Manufacturing Process, Int
    • W Sukthomya and J. Tannock, The Training of Neural Networks to Model Manufacturing Process, Int. Jnl of Intelligent Manufacturing, vol. 16, no. 1, pp. 39-51, 2005.
    • (2005) Jnl of Intelligent Manufacturing , vol.16 , Issue.1 , pp. 39-51
    • Sukthomya, W.1    Tannock, J.2
  • 5
    • 0036604089 scopus 로고    scopus 로고
    • Modeling and Predicting Surface Roughness of the Grinding Process
    • X. Zhou and F. Xi , Modeling and Predicting Surface Roughness of the Grinding Process, Int. Jnl. of Machine Tools & Manufacture, vol. 42, no. 8, pp. 969-977, 2002.
    • (2002) Int. Jnl. of Machine Tools & Manufacture , vol.42 , Issue.8 , pp. 969-977
    • Zhou, X.1    Xi, F.2
  • 6
    • 0038637765 scopus 로고    scopus 로고
    • Predictive Modeling of Surface Roughness in Grinding
    • R.L. Hecker and S. Y. Liang, Predictive Modeling of Surface Roughness in Grinding, Int. Jnl. of Machine Tools and Manufacture, vol. 43, no. 8, pp. 755-761, 2003.
    • (2003) Int. Jnl. of Machine Tools and Manufacture , vol.43 , Issue.8 , pp. 755-761
    • Hecker, R.L.1    Liang, S.Y.2
  • 7
    • 38849160469 scopus 로고    scopus 로고
    • Surface Roughness in Grinding: Offline Identification with an Adaptive Neuro-fuzzy Inference System
    • M. Samhouri and B. Surgenor, Surface Roughness in Grinding: Offline Identification with an Adaptive Neuro-fuzzy Inference System, Int. Conference NAMRAC-33, 2005.
    • (2005) Int. Conference NAMRAC-33
    • Samhouri, M.1    Surgenor, B.2
  • 8
    • 17844394975 scopus 로고    scopus 로고
    • FBF-NN Based Modeling of Cylindrical Plunge Grinding Process using Genetic Algorithm, Int
    • A.K. Nandi and M.K. Banerjee, FBF-NN Based Modeling of Cylindrical Plunge Grinding Process using Genetic Algorithm, Int. JnI. of Materials Processing Technology, vol. 162-163, pp. 655-664, 2005.
    • (2005) JnI. of Materials Processing Technology , vol.162-163 , pp. 655-664
    • Nandi, A.K.1    Banerjee, M.K.2
  • 9
    • 11144328104 scopus 로고    scopus 로고
    • A Neural Network Based Methodology for the Prediction of Surface Roughness in a Turning Process
    • A. Kohli and U.S. Dixit, A Neural Network Based Methodology for the Prediction of Surface Roughness in a Turning Process, Int. JnI. of Advanced Manufacturing Technology, vol. 25, no. 15, pp. 118-129, 2005.
    • (2005) Int. JnI. of Advanced Manufacturing Technology , vol.25 , Issue.15 , pp. 118-129
    • Kohli, A.1    Dixit, U.S.2
  • 10
    • 0346906984 scopus 로고    scopus 로고
    • U.S. Dixit and S. Chandra, A Neural Network Based Methodology for the Prediction of Roll Force and Roll Torque in Fuzzy Form, for Cold Rolling Process, Int Jnl. Adv. Manufacturing Technology, 22, no. 11-12, pp. 883-889, 2003.
    • U.S. Dixit and S. Chandra, A Neural Network Based Methodology for the Prediction of Roll Force and Roll Torque in Fuzzy Form, for Cold Rolling Process, Int Jnl. Adv. Manufacturing Technology, vol. 22, no. 11-12, pp. 883-889, 2003.
  • 12
    • 0004164013 scopus 로고    scopus 로고
    • Fuzzy and Neural Approach
    • Wiley, New York
    • L.H. Tsoukalas and RE. Uhrig, Fuzzy and Neural Approach, in Engineering, Wiley, New York, 1997.
    • (1997) Engineering
    • Tsoukalas, L.H.1    Uhrig, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.