-
2
-
-
15544361893
-
On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip or non-slip boundary conditions
-
Beirão da Veiga H. On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip or non-slip boundary conditions. Comm. Pure Appl. Math. 58 (2005) 552-577
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 552-577
-
-
Beirão da Veiga, H.1
-
3
-
-
38749136105
-
-
H. Beirão da Veiga, Navier-Stokes equations with shear thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
-
H. Beirão da Veiga, Navier-Stokes equations with shear thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
-
-
-
-
4
-
-
38749117409
-
-
H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
-
H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
-
-
-
-
5
-
-
38749093191
-
-
H. Beirão da Veiga, On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), in press
-
H. Beirão da Veiga, On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), in press
-
-
-
-
6
-
-
34548364177
-
Concerning the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations
-
Beirão da Veiga H. Concerning the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations. C. R. Math. Acad. Sci. Paris, Ser. I 345 (2007) 249-252
-
(2007)
C. R. Math. Acad. Sci. Paris, Ser. I
, vol.345
, pp. 249-252
-
-
Beirão da Veiga, H.1
-
7
-
-
38749116087
-
-
H. Beirão da Veiga, On the global regularity of shear-thinning flows in smooth domains, submitted for publication
-
H. Beirão da Veiga, On the global regularity of shear-thinning flows in smooth domains, submitted for publication
-
-
-
-
8
-
-
38749115281
-
-
2, q-regularity of incompressible fluids with shear-dependent viscosities: The shear thinning case, J. Math. Fluid Mech., in press
-
2, q-regularity of incompressible fluids with shear-dependent viscosities: The shear thinning case, J. Math. Fluid Mech., in press
-
-
-
-
9
-
-
50849098835
-
-
F. Crispo, Shear thinning viscous fluids in cylindrical domains. Regularity up to the boundary, J. Math. Fluid Mech., in press
-
F. Crispo, Shear thinning viscous fluids in cylindrical domains. Regularity up to the boundary, J. Math. Fluid Mech., in press
-
-
-
-
10
-
-
23944484056
-
Strong solutions for generalized Newtonian fluids
-
Diening L., and Růžička M. Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7 (2005) 413-450
-
(2005)
J. Math. Fluid Mech.
, vol.7
, pp. 413-450
-
-
Diening, L.1
Růžička, M.2
-
11
-
-
0003369281
-
Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids
-
Springer-Verlag, Berlin
-
Fuchs M., and Seregin G. Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics vol. 1749 (2000), Springer-Verlag, Berlin
-
(2000)
Lecture Notes in Mathematics
, vol.1749
-
-
Fuchs, M.1
Seregin, G.2
-
12
-
-
38749104949
-
-
G.P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in press
-
G.P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in press
-
-
-
-
13
-
-
0003293051
-
Weak and Measure-Valued Solutions to Evolutionary PDEs
-
Chapman and Hall, London
-
Málek J., Nečas J., Rokyta M., and Růžička M. Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation vol. 13 (1996), Chapman and Hall, London
-
(1996)
Applied Mathematics and Mathematical Computation
, vol.13
-
-
Málek, J.1
Nečas, J.2
Rokyta, M.3
Růžička, M.4
-
15
-
-
21244462729
-
Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids
-
Naumann J., and Wolf J. Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids. J. Math. Fluid Mech. 7 (2005) 298-313
-
(2005)
J. Math. Fluid Mech.
, vol.7
, pp. 298-313
-
-
Naumann, J.1
Wolf, J.2
-
18
-
-
0038538865
-
Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids
-
Parés C. Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43 3-4 (1992) 245-296
-
(1992)
Appl. Anal.
, vol.43
, Issue.3-4
, pp. 245-296
-
-
Parés, C.1
-
19
-
-
0001634191
-
Mechanics of non-Newtonian fluids
-
Recent Developments in Theoretical Fluid Mechanics. Galdi G.P., and Nečas J. (Eds), Longman
-
Rajagopal K.R. Mechanics of non-Newtonian fluids. In: Galdi G.P., and Nečas J. (Eds). Recent Developments in Theoretical Fluid Mechanics. Res. Notes Math. vol. 291 (1993), Longman 129-162
-
(1993)
Res. Notes Math.
, vol.291
, pp. 129-162
-
-
Rajagopal, K.R.1
|