메뉴 건너뛰기




Volumn 341, Issue 1, 2008, Pages 559-574

Global regularity of a class of p-fluid flows in cylinders

Author keywords

Generalized Newtonian fluids; Global regularity; Shear thinning fluids

Indexed keywords


EID: 38749102046     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2007.10.034     Document Type: Article
Times cited : (11)

References (19)
  • 2
    • 15544361893 scopus 로고    scopus 로고
    • On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip or non-slip boundary conditions
    • Beirão da Veiga H. On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip or non-slip boundary conditions. Comm. Pure Appl. Math. 58 (2005) 552-577
    • (2005) Comm. Pure Appl. Math. , vol.58 , pp. 552-577
    • Beirão da Veiga, H.1
  • 3
    • 38749136105 scopus 로고    scopus 로고
    • H. Beirão da Veiga, Navier-Stokes equations with shear thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
    • H. Beirão da Veiga, Navier-Stokes equations with shear thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
  • 4
    • 38749117409 scopus 로고    scopus 로고
    • H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
    • H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
  • 5
    • 38749093191 scopus 로고    scopus 로고
    • H. Beirão da Veiga, On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), in press
    • H. Beirão da Veiga, On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), in press
  • 6
    • 34548364177 scopus 로고    scopus 로고
    • Concerning the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations
    • Beirão da Veiga H. Concerning the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations. C. R. Math. Acad. Sci. Paris, Ser. I 345 (2007) 249-252
    • (2007) C. R. Math. Acad. Sci. Paris, Ser. I , vol.345 , pp. 249-252
    • Beirão da Veiga, H.1
  • 7
    • 38749116087 scopus 로고    scopus 로고
    • H. Beirão da Veiga, On the global regularity of shear-thinning flows in smooth domains, submitted for publication
    • H. Beirão da Veiga, On the global regularity of shear-thinning flows in smooth domains, submitted for publication
  • 8
    • 38749115281 scopus 로고    scopus 로고
    • 2, q-regularity of incompressible fluids with shear-dependent viscosities: The shear thinning case, J. Math. Fluid Mech., in press
    • 2, q-regularity of incompressible fluids with shear-dependent viscosities: The shear thinning case, J. Math. Fluid Mech., in press
  • 9
    • 50849098835 scopus 로고    scopus 로고
    • F. Crispo, Shear thinning viscous fluids in cylindrical domains. Regularity up to the boundary, J. Math. Fluid Mech., in press
    • F. Crispo, Shear thinning viscous fluids in cylindrical domains. Regularity up to the boundary, J. Math. Fluid Mech., in press
  • 10
    • 23944484056 scopus 로고    scopus 로고
    • Strong solutions for generalized Newtonian fluids
    • Diening L., and Růžička M. Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7 (2005) 413-450
    • (2005) J. Math. Fluid Mech. , vol.7 , pp. 413-450
    • Diening, L.1    Růžička, M.2
  • 11
    • 0003369281 scopus 로고    scopus 로고
    • Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids
    • Springer-Verlag, Berlin
    • Fuchs M., and Seregin G. Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics vol. 1749 (2000), Springer-Verlag, Berlin
    • (2000) Lecture Notes in Mathematics , vol.1749
    • Fuchs, M.1    Seregin, G.2
  • 12
    • 38749104949 scopus 로고    scopus 로고
    • G.P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in press
    • G.P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in press
  • 15
    • 21244462729 scopus 로고    scopus 로고
    • Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids
    • Naumann J., and Wolf J. Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids. J. Math. Fluid Mech. 7 (2005) 298-313
    • (2005) J. Math. Fluid Mech. , vol.7 , pp. 298-313
    • Naumann, J.1    Wolf, J.2
  • 18
    • 0038538865 scopus 로고
    • Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids
    • Parés C. Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43 3-4 (1992) 245-296
    • (1992) Appl. Anal. , vol.43 , Issue.3-4 , pp. 245-296
    • Parés, C.1
  • 19
    • 0001634191 scopus 로고
    • Mechanics of non-Newtonian fluids
    • Recent Developments in Theoretical Fluid Mechanics. Galdi G.P., and Nečas J. (Eds), Longman
    • Rajagopal K.R. Mechanics of non-Newtonian fluids. In: Galdi G.P., and Nečas J. (Eds). Recent Developments in Theoretical Fluid Mechanics. Res. Notes Math. vol. 291 (1993), Longman 129-162
    • (1993) Res. Notes Math. , vol.291 , pp. 129-162
    • Rajagopal, K.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.