-
1
-
-
0003796630
-
-
Pure and Applied Mathematics, Academic Press, New York-London
-
R. A. ADAMS, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975.
-
(1975)
Sobolev Spaces
, vol.65
-
-
Adams, R.A.1
-
2
-
-
84957251972
-
Young measure-valued solutions for non-Newtonian incompressible fluids
-
H. BELLOUT, F. BLOOM and J. NEČAS, Young measure-valued solutions for non-Newtonian incompressible fluids, Commun. Partial Differ. Equations 19 (1994), 1763-1803.
-
(1994)
Commun. Partial Differ. Equations
, vol.19
, pp. 1763-1803
-
-
Bellout, H.1
Bloom, F.2
Nečas, J.3
-
3
-
-
33645443877
-
-
Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin
-
J. BERGH and J. LÖFSTRÖM, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin, 1976.
-
(1976)
Interpolation Spaces. An Introduction
, Issue.223
-
-
Bergh, J.1
Löfström, J.2
-
6
-
-
0004217026
-
-
UHL, Number 15 in Mathematical Surveys, American Mathematical Society
-
J. DIESTEL and J. J. JUN. UHL, Vector Measures, Number 15 in Mathematical Surveys, American Mathematical Society, 1977.
-
(1977)
Vector Measures
-
-
Diestel, J.1
Jun, J.J.2
-
7
-
-
0013183854
-
On existence results for fluids with shear dependent viscosity - Unsteady flows
-
volume 406 of Chapman & Hall/CRC Res. Notes Math., Chapman & Hall/CRC, Boca Raton, FL
-
J. FREHSE, J. MÁLEK and M. STEINHAUER, On existence results for fluids with shear dependent viscosity - unsteady flows, in: Partial differential equations (Praha, 1998), volume 406 of Chapman & Hall/CRC Res. Notes Math., pages 121-129. Chapman & Hall/CRC, Boca Raton, FL, 2000.
-
(2000)
Partial Differential Equations (Praha, 1998)
, pp. 121-129
-
-
Frehse, J.1
Málek, J.2
Steinhauer, M.3
-
8
-
-
0042786083
-
An existence result for fluids with shear dependent viscosity - Steady flows
-
J. FREHSE, J. MÁLEK and M. STEINHAUER, An existence result for fluids with shear dependent viscosity - steady flows, in: Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996), volume 30, pages 3041-3049, 1997.
-
(1997)
Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996)
, vol.30
, pp. 3041-3049
-
-
Frehse, J.1
Málek, J.2
Steinhauer, M.3
-
10
-
-
0009042484
-
Full regularity of weak solutions to a class of nonlinear fluids in two dimensions - Stationary, periodic problem
-
P. KAPLICKÝ, J. MÁLEK and J. STARÁ, Full regularity of weak solutions to a class of nonlinear fluids in two dimensions - stationary, periodic problem, Commentat. Math. Univ. Carol. 38 (1997), 681-695.
-
(1997)
Commentat. Math. Univ. Carol.
, vol.38
, pp. 681-695
-
-
Kaplický, P.1
Málek, J.2
Stará, J.3
-
16
-
-
0003946958
-
-
Études mathématiques, XX, Dunod; Gauthier-Villars, Paris
-
J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Études mathématiques, XX, 554 p. Dunod; Gauthier-Villars, Paris, 1969.
-
(1969)
Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires
-
-
Lions, J.L.1
-
17
-
-
0003406622
-
-
Chapman & Hall, London
-
J. MÁLEK, J. NECAS, M. ROKYTA and M. RŮŽIČKA, Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996.
-
(1996)
Weak and Measure-valued Solutions to Evolutionary PDEs
-
-
Málek, J.1
Necas, J.2
Rokyta, M.3
Růžička, M.4
-
18
-
-
0000365385
-
On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case p ≥ 2
-
J. MÁLEK, J. NEČAS and M. RŮZIČKA, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case p ≥ 2, Adv. Differ. Equ. 6 (2001), 257-302.
-
(2001)
Adv. Differ. Equ.
, vol.6
, pp. 257-302
-
-
Málek, J.1
Nečas, J.2
Růzička, M.3
-
19
-
-
0000034654
-
Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity
-
J. MÁLEK, K. R. RAJAGOPAL and M. RŮŽIČKA, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci. 5 (1995), 789-812.
-
(1995)
Math. Models Methods Appl. Sci.
, vol.5
, pp. 789-812
-
-
Málek, J.1
Rajagopal, K.R.2
Růžička, M.3
-
21
-
-
0035735113
-
On fully implicit space-time discretization for motions of incompressible fluids with shear dependent viscosities: The case p ≤ 2
-
A. PROHL and M. RŮŽIČKA, On fully implicit space-time discretization for motions of incompressible fluids with shear dependent viscosities: the case p ≤ 2, SIAM J. Num. Anal. 39 (2001), 214-249.
-
(2001)
SIAM J. Num. Anal.
, vol.39
, pp. 214-249
-
-
Prohl, A.1
Růžička, M.2
-
22
-
-
0030195537
-
On the modeling of electrorheological materials
-
K. R. RAJAGOPAL and M. RŮŽIČKA, On the modeling of electrorheological materials, Mech. Res. Commun. 23 (1996), 401-407.
-
(1996)
Mech. Res. Commun.
, vol.23
, pp. 401-407
-
-
Rajagopal, K.R.1
Růžička, M.2
-
23
-
-
0035530412
-
Mathematical modeling of electrorheological materials
-
K. R. RAJAGOPAL and M. RŮŽIČKA, Mathematical modeling of electrorheological materials, Cont. Mech. and Thermodyn. 13 (2001), 59-78.
-
(2001)
Cont. Mech. and Thermodyn.
, vol.13
, pp. 59-78
-
-
Rajagopal, K.R.1
Růžička, M.2
-
24
-
-
18344404502
-
A note on steady flow of fluids with shear dependent viscosity
-
M. RŮŽIČKA, A note on steady flow of fluids with shear dependent viscosity, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029-3039.
-
(1997)
Nonlinear Anal., Theory Methods Appl.
, vol.30
, pp. 3029-3039
-
-
Růžička, M.1
-
25
-
-
0003363431
-
Flow of shear dependent electrorheological fluids: Unsteady space periodic case
-
Kluwer/Plenum, New York
-
M. RŮŽIČKA, Flow of shear dependent electrorheological fluids: unsteady space periodic case, in: Applied nonlinear analysis, pp. 485-504, Kluwer/Plenum, New York, 1999.
-
(1999)
Applied Nonlinear Analysis
, pp. 485-504
-
-
Růžička, M.1
-
27
-
-
0003882441
-
-
North Holland, Amsterdam
-
H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978.
-
(1978)
Interpolation Theory, Function Spaces, Differential Operators
-
-
Triebel, H.1
|