-
1
-
-
45149145391
-
-
PHYADX 0378-4371 10.1016/0378-4371(89)90034-4
-
S. F. Edwards and R. B. S. Oakeshott, Physica A PHYADX 0378-4371 10.1016/0378-4371(89)90034-4 157, 1080 (1989).
-
(1989)
Physica A
, vol.157
, pp. 1080
-
-
Edwards, S.F.1
Oakeshott, R.B.S.2
-
2
-
-
0032606407
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.60.687
-
A. V. Tkachenko and T. A. Witten, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.60.687 60, 687 (1999)
-
(1999)
Phys. Rev. e
, vol.60
, pp. 687
-
-
Tkachenko, A.V.1
Witten, T.A.2
-
3
-
-
37649027693
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.65.031304
-
L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, and D. Levine, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.65.031304 65, 031304 (2002)
-
(2002)
Phys. Rev. e
, vol.65
, pp. 031304
-
-
Silbert, L.E.1
Ertaş, D.2
Grest, G.S.3
Halsey, T.C.4
Levine, D.5
-
5
-
-
41349085985
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.70.061306
-
J. H. Snoeijer, T. J. H. Vlugt, W. G. Ellenbroek, M. van Hecke, and J. M. J. van Leeuwen, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.70.061306 70, 061306 (2004).
-
(2004)
Phys. Rev. e
, vol.70
, pp. 061306
-
-
Snoeijer, J.H.1
Vlugt, T.J.H.2
Ellenbroek, W.G.3
Van Hecke, M.4
Van Leeuwen, J.M.J.5
-
6
-
-
28844450157
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.72.031306
-
B. P. Tighe, J. E. S. Socolar, D. G. Schaeffer, W. G. Mitchener, and M. L. Huber, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.72.031306 72, 031306 (2005).
-
(2005)
Phys. Rev. e
, vol.72
, pp. 031306
-
-
Tighe, B.P.1
Socolar, J.E.S.2
Schaeffer, D.G.3
Mitchener, W.G.4
Huber, M.L.5
-
7
-
-
41349122186
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.70.051303
-
P. T. Metzger, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.70.051303 70, 051303 (2004).
-
(2004)
Phys. Rev. e
, vol.70
, pp. 051303
-
-
Metzger, P.T.1
-
8
-
-
38649132659
-
-
Ph.D. thesis
-
P. T. Metzger, Ph.D. thesis, 2005.
-
(2005)
-
-
Metzger, P.T.1
-
9
-
-
18244391472
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.148001
-
P. T. Metzger and C. M. Donahue, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.148001 94, 148001 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 148001
-
-
Metzger, P.T.1
Donahue, C.M.2
-
10
-
-
38649128533
-
-
It can easily be shown that the outgoing vectors are correlated whenever f (p,t) is not the Maxwell-Boltzmann distribution.
-
It can easily be shown that the outgoing vectors are correlated whenever f (p,t) is not the Maxwell-Boltzmann distribution.
-
-
-
-
11
-
-
41349096824
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.66.061303
-
L. E. Silbert, G. S. Grest, and J. W. Landry, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.66.061303 66, 061303 (2002).
-
(2002)
Phys. Rev. e
, vol.66
, pp. 061303
-
-
Silbert, L.E.1
Grest, G.S.2
Landry, J.W.3
-
12
-
-
38649134852
-
-
note
-
Similarly, if we apply this method to an ensemble of dilute gas collision networks (in four space+time dimensions), then the phase space variables would not include the individual momentum vectors p1 and p2 for each collision, nor the outgoing momentum vectors p1′ and p2′. Instead, it would consist of the sum of the incoming momentum vectors at each collision, P, along with the colliding momentum vector angles prior to the collision, (θ1, 1) and (θ2, 2) and after the collision (θ1′, 1′) and (θ2′, 2′). The magnitudes of the incoming and outgoing momentum vectors could then be recovered by linear algebra and trigonometry. Note that this differs from the granular case only in that there is one fewer conserved component of momentum than there are dimensions in the collision network: there are Px, Py, and Pz, but no Pt corresponding to the time dimension. Despite this difference, the method works identically for both the granular and dilute gas cases.
-
-
-
-
13
-
-
41349115228
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.66.041305
-
H. Troadec, F. Radjai, S. Roux, and J. C. Charmet, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.66.041305 66, 041305 (2002).
-
(2002)
Phys. Rev. e
, vol.66
, pp. 041305
-
-
Troadec, H.1
Radjai, F.2
Roux, S.3
Charmet, J.C.4
-
14
-
-
38649108872
-
-
In the case of the dilute gas where the ensemble describes collision networks, these regions are layers of width Δt in the time dimension.
-
In the case of the dilute gas where the ensemble describes collision networks, these regions are layers of width Δt in the time dimension.
-
-
-
-
15
-
-
38649087724
-
-
In particular, if we leave out the fourth term from Eq. 5 so that the ensemble reverts to an Edwards ensemble, then in the thermodynamic limit essentially all of the packings in the ensemble will demonstrate a certain kind of relaxation in Pj. Any packings that have a different sequence Pj without this relaxation will thus comprise a set of zero measure in the Edwards ensemble.
-
In particular, if we leave out the fourth term from Eq. 5 so that the ensemble reverts to an Edwards ensemble, then in the thermodynamic limit essentially all of the packings in the ensemble will demonstrate a certain kind of relaxation in Pj. Any packings that have a different sequence Pj without this relaxation will thus comprise a set of zero measure in the Edwards ensemble.
-
-
-
-
16
-
-
38649109897
-
-
In the case of the dilute gas, there is no steric exclusion. Just as in the granular case, eliminating Θζ converts the ensemble from a set of closed-loop networks to a set of branching tree networks. The assumption is that correlation does not arise through closed loops, and so eliminating Θζ will not affect the momentum statistics. Indeed, the generalized stosszahlansatz applied to momentum networks reduces to Boltzmann's stosszahlansatz when we assume that information propagates only in the forward-time direction, as shown in Appendix.
-
In the case of the dilute gas, there is no steric exclusion. Just as in the granular case, eliminating Θζ converts the ensemble from a set of closed-loop networks to a set of branching tree networks. The assumption is that correlation does not arise through closed loops, and so eliminating Θζ will not affect the momentum statistics. Indeed, the generalized stosszahlansatz applied to momentum networks reduces to Boltzmann's stosszahlansatz when we assume that information propagates only in the forward-time direction, as shown in Appendix.
-
-
-
-
18
-
-
0008635162
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.63.041304
-
D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.63.041304 63, 041304 (2001)
-
(2001)
Phys. Rev. e
, vol.63
, pp. 041304
-
-
Blair, D.L.1
Mueggenburg, N.W.2
Marshall, A.H.3
Jaeger, H.M.4
Nagel, S.R.5
-
19
-
-
41349085985
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.70.061306
-
J. H. Snoeijer, T. J. H. Vlugt, W. G. Ellenbroek, M. van Hecke, and J. M. J. van Leeuwen, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.70.061306 70, 061306 (2004).
-
(2004)
Phys. Rev. e
, vol.70
, pp. 061306
-
-
Snoeijer, J.H.1
Vlugt, T.J.H.2
Ellenbroek, W.G.3
Van Hecke, M.4
Van Leeuwen, J.M.J.5
-
20
-
-
41349122186
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.70.051303
-
P. T. Metzger, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.70.051303 70, 051303 (2004).
-
(2004)
Phys. Rev. e
, vol.70
, pp. 051303
-
-
Metzger, P.T.1
|