메뉴 건너뛰기




Volumn 196, Issue 2, 2008, Pages 705-719

A new stage structured predator-prey Gomportz model with time delay and impulsive perturbations on the prey

Author keywords

Extinction; Impulsive effect; Maturation time delay; Permanence; Predator prey model with age structure

Indexed keywords

DYNAMICAL SYSTEMS; HARVESTING; PARAMETER ESTIMATION;

EID: 38649104183     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2007.07.020     Document Type: Article
Times cited : (32)

References (22)
  • 1
    • 0000083221 scopus 로고
    • Age-dependent predation is not a simple process. I. Continuous time models
    • Hastings A. Age-dependent predation is not a simple process. I. Continuous time models. Theor. Popul. Biol. 23 (1983) 47-62
    • (1983) Theor. Popul. Biol. , vol.23 , pp. 47-62
    • Hastings, A.1
  • 2
    • 34249110754 scopus 로고    scopus 로고
    • J. Jiao, X. Meng, L. Chen, A stage-structured Holling mass defence predator-prey model with impulsive perturbations on predators, Appl. Math. Comp. doi:10.1016/j.amc.2006.12.043.
    • J. Jiao, X. Meng, L. Chen, A stage-structured Holling mass defence predator-prey model with impulsive perturbations on predators, Appl. Math. Comp. doi:10.1016/j.amc.2006.12.043.
  • 3
    • 0031124171 scopus 로고    scopus 로고
    • A predator-prey system with stage-structure for predator
    • Wang W., and Chen L. A predator-prey system with stage-structure for predator. Comp. Math. Appl. 33 (1997) 83-91
    • (1997) Comp. Math. Appl. , vol.33 , pp. 83-91
    • Wang, W.1    Chen, L.2
  • 4
    • 15844390604 scopus 로고    scopus 로고
    • A stage structured predator-prey model and its dependence on through-stage delay and death rate
    • Gourley S.A., and Kuang Y. A stage structured predator-prey model and its dependence on through-stage delay and death rate. J. Math. Biol. 49 (2004) 188-200
    • (2004) J. Math. Biol. , vol.49 , pp. 188-200
    • Gourley, S.A.1    Kuang, Y.2
  • 5
    • 33747198005 scopus 로고    scopus 로고
    • A stage-structured predator-prey model of beddington deangelis type
    • Liu S., and Beretta E. A stage-structured predator-prey model of beddington deangelis type. SIAM J. Appl. Math. 66 4 (2006) 1101-1129
    • (2006) SIAM J. Appl. Math. , vol.66 , Issue.4 , pp. 1101-1129
    • Liu, S.1    Beretta, E.2
  • 6
    • 0036659991 scopus 로고    scopus 로고
    • Asymptotic behaviors of competitive Lotka-Volterra system with stage structure
    • Liu S., Chen L., Luo G., and Jiang Y. Asymptotic behaviors of competitive Lotka-Volterra system with stage structure. J. Math. Anal. Appl. 271 (2002) 124-138
    • (2002) J. Math. Anal. Appl. , vol.271 , pp. 124-138
    • Liu, S.1    Chen, L.2    Luo, G.3    Jiang, Y.4
  • 7
    • 85064789966 scopus 로고    scopus 로고
    • The stage-structured predator-prey system with delay and harvesting
    • Song X., and Cui J. The stage-structured predator-prey system with delay and harvesting. Appl. Anal. 81 (2002) 1127-1142
    • (2002) Appl. Anal. , vol.81 , pp. 1127-1142
    • Song, X.1    Cui, J.2
  • 8
    • 0041729100 scopus 로고    scopus 로고
    • The asymptotic behaviors of a stage-structured autonomous predator-prey system with time delay
    • Ou L., et al. The asymptotic behaviors of a stage-structured autonomous predator-prey system with time delay. J. Math. Appl. 283 (2003) 534-548
    • (2003) J. Math. Appl. , vol.283 , pp. 534-548
    • Ou, L.1
  • 9
    • 34248377010 scopus 로고    scopus 로고
    • Persistence of some stage structured ecosystems with finite and infinite delay
    • Wei F., and Wang K. Persistence of some stage structured ecosystems with finite and infinite delay. Appl. Math. Comp. 189 1 (2007) 902-909
    • (2007) Appl. Math. Comp. , vol.189 , Issue.1 , pp. 902-909
    • Wei, F.1    Wang, K.2
  • 10
    • 0025132577 scopus 로고
    • A time-delay model of single-species growth with stage structure
    • Aiello W.G., and Freedman H.I. A time-delay model of single-species growth with stage structure. Math. Biosci. 101 (1990) 139-153
    • (1990) Math. Biosci. , vol.101 , pp. 139-153
    • Aiello, W.G.1    Freedman, H.I.2
  • 11
    • 0037200435 scopus 로고    scopus 로고
    • Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures
    • D'Onofrio A. Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Modell. 36 (2002) 473-489
    • (2002) Math. Comput. Modell. , vol.36 , pp. 473-489
    • D'Onofrio, A.1
  • 12
    • 3042704738 scopus 로고    scopus 로고
    • The periodic competing Lotka-Volterra model with impulsive effect
    • Liu B., and Chen L. The periodic competing Lotka-Volterra model with impulsive effect. IMA J. Math. Med. Biol. 21 (2004) 129-145
    • (2004) IMA J. Math. Med. Biol. , vol.21 , pp. 129-145
    • Liu, B.1    Chen, L.2
  • 13
    • 0031750774 scopus 로고    scopus 로고
    • The dynamics of an infectious disease in a population with birth pulse
    • Roberts M.G., and Kao R.R. The dynamics of an infectious disease in a population with birth pulse. Math. Biosci. 149 (1998) 23-36
    • (1998) Math. Biosci. , vol.149 , pp. 23-36
    • Roberts, M.G.1    Kao, R.R.2
  • 14
    • 12444292806 scopus 로고    scopus 로고
    • The effect of seasonal harvesting on stage-structured population models
    • Tang S., and Chen L. The effect of seasonal harvesting on stage-structured population models. J. Math. Biol. 48 (2004) 357-374
    • (2004) J. Math. Biol. , vol.48 , pp. 357-374
    • Tang, S.1    Chen, L.2
  • 15
    • 27144526577 scopus 로고    scopus 로고
    • Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations
    • Zhang S., Tan D., and Chen L. Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations. Chaos Soliton. Fract. 28 (2006) 367-376
    • (2006) Chaos Soliton. Fract. , vol.28 , pp. 367-376
    • Zhang, S.1    Tan, D.2    Chen, L.3
  • 16
    • 24344431618 scopus 로고    scopus 로고
    • Stability for impulsive delay differential equations
    • Yan J. Stability for impulsive delay differential equations. Nonlinear Anal. 63 (2005) 66-80
    • (2005) Nonlinear Anal. , vol.63 , pp. 66-80
    • Yan, J.1
  • 17
    • 0242624834 scopus 로고    scopus 로고
    • Linearized oscillation theory for a nonlinear delay impulsive equation
    • Leonid B., and Elena B. Linearized oscillation theory for a nonlinear delay impulsive equation. J. Comp. Appl. Math. 161 (2003) 477-495
    • (2003) J. Comp. Appl. Math. , vol.161 , pp. 477-495
    • Leonid, B.1    Elena, B.2
  • 18
    • 0037410027 scopus 로고    scopus 로고
    • Boundedness for impulsive delay differential equations and applications to population growth models
    • Liu X., and Ballinger G. Boundedness for impulsive delay differential equations and applications to population growth models. Nonlinear Anal. 53 (2003) 1041-1062
    • (2003) Nonlinear Anal. , vol.53 , pp. 1041-1062
    • Liu, X.1    Ballinger, G.2
  • 19


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.