메뉴 건너뛰기




Volumn , Issue , 2006, Pages 174-179

Feature selection on high throughput SELDI-TOF mass-spectrometry data for identifying biomarker candidates in ovarian and prostate cancer

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DISEASES; FEATURE EXTRACTION; FILTRATION; MASS SPECTROMETRY; UROLOGY;

EID: 38549114221     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/icdmw.2006.80     Document Type: Conference Paper
Times cited : (9)

References (13)
  • 1
    • 77953962647 scopus 로고    scopus 로고
    • Universitity of Waikato
    • "WEKA machine learning package, http://www.cs.waikato.ac.nz/ml/ weka". Universitity of Waikato.
    • WEKA Machine Learning Package
  • 2
    • 1542406254 scopus 로고    scopus 로고
    • Ovarian cancer detection by logical analysis of proteomic data
    • DOI 10.1002/pmic.200300574
    • G. Alexe, S. Alexe, L. A. Liotta, E. Petricoin, M. Reiss, and P. L. Hammer. Ovarian cancer detection by logical analysis of proteomic data. Proteomics, 4(3):766-783, 2004. (Pubitemid 38339155)
    • (2004) Proteomics , vol.4 , Issue.3 , pp. 766-783
    • Alexe, G.1    Alexe, S.2    Liotta, L.A.3    Petricoin, E.4    Reiss, M.5    Hammer, P.L.6
  • 4
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M. A. Hall. Correlation-based feature selection for discrete and numeric class machine learning. In ICML, pages 359-366, 2000.
    • (2000) ICML , pp. 359-366
    • Hall, M.A.1
  • 5
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 15(6):1437-1447, 2003.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 6
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • 13 May 1983, 4598
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 7
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • I. Kononenko. Estimating attributes: Analysis and extensions of relief. In ECML, pages 171-182, 1994.
    • (1994) ECML , pp. 171-182
    • Kononenko, I.1
  • 8
    • 0242653640 scopus 로고    scopus 로고
    • Clinical proteomics: Written in blood
    • Oct
    • L. A. Liotta, M. Ferrari, and E. Petricoin. Clinical proteomics: written in blood. Nature, 425(6961):905, Oct 2003.
    • (2003) Nature , vol.425 , Issue.6961 , pp. 905
    • Liotta, L.A.1    Ferrari, M.2    Petricoin, E.3
  • 9
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection - A filter solution
    • H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter solution. In ICML, pages 319-327, 1996.
    • (1996) ICML , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 13
    • 19544394460 scopus 로고    scopus 로고
    • Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
    • DOI 10.1093/bioinformatics/bti370
    • J. S. Yu, S. Ongarello, R. Fiedler, X. W. Chen, G. Toffolo, C. Cobelli, and Z. Trajanoski. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics, 21(10):2200-2209, 2005. (Pubitemid 40731571)
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2200-2209
    • Yu, J.S.1    Ongarello, S.2    Fiedler, R.3    Chen, X.W.4    Toffolo, G.5    Cobelli, C.6    Trajanoski, Z.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.