-
1
-
-
84891580093
-
-
For general reviews of asymmetric catalyses using chiral metal complexes, see: (a). I. Ojima. New York: Wiley
-
For general reviews of asymmetric catalyses using chiral metal complexes, see: (a) Ojima I. Catalytic Asymmetric Synthesis. 2nd ed.:2000;Wiley, New York
-
(2000)
Catalytic Asymmetric Synthesis 2nd Ed.
-
-
-
2
-
-
0003445429
-
-
E.N. Jacobsen, A. Pfaltz, & H. Yamamoto. New York: Springer
-
Jacobsen E.N., Pfaltz A., Yamamoto H. Comprehensive Asymmetric Catalysis. 1999;Springer, New York
-
(1999)
Comprehensive Asymmetric Catalysis
-
-
-
4
-
-
0020173565
-
-
For recent general reviews of asymmetric organocatalysis, see: (a)
-
For recent general reviews of asymmetric organocatalysis, see: (a) Drauz K., Kleeman A., Martens J. Angew. Chem., Int. Ed. Engl. 21:1982;584
-
(1982)
Angew. Chem., Int. Ed. Engl.
, vol.21
, pp. 584
-
-
Drauz, K.1
Kleeman, A.2
Martens, J.3
-
9
-
-
0003544583
-
-
For general reviews of asymmetric PTC, see: (a). I. Ojima. New York: Wiley
-
For general reviews of asymmetric PTC, see: (a) O'Donnell M.J. Ojima I. Catalytic Asymmetric Synthesis. 2nd ed.:2000;Wiley, New York
-
(2000)
Catalytic Asymmetric Synthesis 2nd Ed.
-
-
O'Donnell, M.J.1
-
28
-
-
0032499049
-
-
For selected examples of other important contributions in this field, see: (a)
-
For selected examples of other important contributions in this field, see: (a) Arai S., Shioiri T. Tetrahedron Lett. 39:1998;2145
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 2145
-
-
Arai, S.1
Shioiri, T.2
-
32
-
-
0037127783
-
-
and references therein
-
Arai S., Tsuge H., Oku M., Miura M., Shioiri T. Tetrahedron. 58:2002;1623. and references therein
-
(2002)
Tetrahedron
, vol.58
, pp. 1623
-
-
Arai, S.1
Tsuge, H.2
Oku, M.3
Miura, M.4
Shioiri, T.5
-
38
-
-
0034693124
-
-
For other examples, see (a)
-
For other examples, see (a) Belokon Y.N., Kochetkov K.A., Churkina T.D., Ikonnikov N.S., Chesnokov A.A., Larionov O.V., Singh I., Parmar V.S., Vyskocil S., Kagan H.B. J. Org. Chem. 65:2000;7041
-
(2000)
J. Org. Chem.
, vol.65
, pp. 7041
-
-
Belokon, Y.N.1
Kochetkov, K.A.2
Churkina, T.D.3
Ikonnikov, N.S.4
Chesnokov, A.A.5
Larionov, O.V.6
Singh, I.7
Parmar, V.S.8
Vyskocil, S.9
Kagan, H.B.10
-
39
-
-
0035907042
-
-
Belokon Y.N., Kochetkov K.A., Churkina T.D., Ikonnikov N.S., Larionov O.V., Harutyunyan S.R., Vyskocil S., North M., Kagan H.B. Angew. Chem., Int. Ed. 40:2001;1948
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 1948
-
-
Belokon, Y.N.1
Kochetkov, K.A.2
Churkina, T.D.3
Ikonnikov, N.S.4
Larionov, O.V.5
Harutyunyan, S.R.6
Vyskocil, S.7
North, M.8
Kagan, H.B.9
-
40
-
-
0037008633
-
-
Kita T., Georgieva A., Hashimoto Y., Nakata T., Nagasawa K. Angew. Chem., Int. Ed. 41:2002;2832
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 2832
-
-
Kita, T.1
Georgieva, A.2
Hashimoto, Y.3
Nakata, T.4
Nagasawa, K.5
-
42
-
-
0038666477
-
-
Mase N., Ohno T., Hoshikawa N., Ohishi K., Morimoto H., Yoda H., Takabe K. Tetrahedron Lett. 44:2003;4073
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 4073
-
-
Mase, N.1
Ohno, T.2
Hoshikawa, N.3
Ohishi, K.4
Morimoto, H.5
Yoda, H.6
Takabe, K.7
-
43
-
-
0037164678
-
-
Shibuguchi T., Fukuta Y., Akachi Y., Sekine A., Ohshima T., Shibasaki M. Tetrahedron Lett. 43:2002;9539
-
(2002)
Tetrahedron Lett.
, vol.43
, pp. 9539
-
-
Shibuguchi, T.1
Fukuta, Y.2
Akachi, Y.3
Sekine, A.4
Ohshima, T.5
Shibasaki, M.6
-
44
-
-
0043194288
-
-
see also Supporting Information
-
Ohshima T., Gnanadesikan V., Shibuguchi T., Fukuta Y., Nemoto T., Shibasaki M. J. Am. Chem. Soc. 125:2003;11206. see also Supporting Information
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 11206
-
-
Ohshima, T.1
Gnanadesikan, V.2
Shibuguchi, T.3
Fukuta, Y.4
Nemoto, T.5
Shibasaki, M.6
-
45
-
-
1842782786
-
-
Fukuta Y., Ohshima T., Gnanadesikan V., Shibuguchi T., Nemoto T., Kisugi T., Okino T., Shibasaki M. Proc. Natl. Acad. Sci., USA. 101:2004;5433
-
(2004)
Proc. Natl. Acad. Sci., USA
, vol.101
, pp. 5433
-
-
Fukuta, Y.1
Ohshima, T.2
Gnanadesikan, V.3
Shibuguchi, T.4
Nemoto, T.5
Kisugi, T.6
Okino, T.7
Shibasaki, M.8
-
46
-
-
0003520820
-
-
For recent reviews, see: (a). F. Vögtle, J.F. Stoddart, & M. Shibasaki. New York: Wiley
-
For recent reviews, see: (a) Shibasaki M. Vögtle F., Stoddart J.F., Shibasaki M. Stimulating Concepts in Chemistry. 2000;Wiley, New York
-
(2000)
Stimulating Concepts in Chemistry
-
-
Shibasaki, M.1
-
48
-
-
3843051978
-
-
For example, (Sigma-Aldrich Co., St. Louis, MO), L-tartaric acid: 100 g, 4100 yen (ca. $ 33), diethyl L-tartrate: 100 g, 8600 yen (ca. $ 70), quinine: 100 g, 78000 yen (ca. $ 640), and (R)-BINOL: 100 g, 783000 yen (ca. $ 6420)
-
For example, (Sigma-Aldrich Co., St. Louis, MO), L-tartaric acid: 100 g, 4100 yen (ca. $ 33), diethyl L-tartrate: 100 g, 8600 yen (ca. $ 70), quinine: 100 g, 78000 yen (ca. $ 640), and (R)-BINOL: 100 g, 783000 yen (ca. $ 6420)
-
-
-
-
49
-
-
0042041206
-
-
2 (Accelrys Inc., San Diego, CA, and Cambridge, UK). The conformation depicted in Figure 2 was obtained using a random conformational search, the so-called Monte Carlo method, followed by a molecular mechanics minimization calculation (Universal Force Field v.1.02, see: Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W.A., III; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024).
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 10024
-
-
Rappe, A.K.1
Casewit, C.J.2
Colwell, K.S.3
Goddard III, W.A.4
Skiff W., M.5
-
50
-
-
37649026114
-
-
For a general review of TADDOL, see:
-
For a general review of TADDOL, see: Seebach D., Beck A.K., Heckel A. Angew. Chem., Int. Ed. 40:2001;92
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 92
-
-
Seebach, D.1
Beck, A.K.2
Heckel, A.3
-
51
-
-
3843098830
-
-
Although TADDOL promotes asymmetric phase-transfer alkylation of aldimine, it is not effective for alkylation of ketimine. See Ref. 10a
-
Although TADDOL promotes asymmetric phase-transfer alkylation of aldimine, it is not effective for alkylation of ketimine. See Ref. 10a
-
-
-
-
52
-
-
3843126018
-
-
note
-
-) are now commercially available from Wako Pure Chemical Industries, Ltd., Japan (fax: +81-120-052-806; e-mail: labchem-tec@wako-chem.co.jp) [Catalog No. 201-16141 for (R,R)-3p, 208-16151 for (S,S)-3p, 205-16161 for (R,R)-3dd, and 202-16171 for (S,S)-3dd]
-
-
-
-
53
-
-
3843081376
-
-
2 =7:3) enhanced reactivity efficiently without loss of selectivity
-
2 =7:3) enhanced reactivity efficiently without loss of selectivity
-
-
-
-
54
-
-
3843147895
-
-
2=Me) was used for catalyst synthesis, a mixture of diammonium salt and monoammonium salt was obtained due to low reactivity in the methylation step. Therefore, screening of the aromatic moiety was difficult with dimethyl acetal. Changing the acetal moiety solved this low reactivity problem
-
2=Me) was used for catalyst synthesis, a mixture of diammonium salt and monoammonium salt was obtained due to low reactivity in the methylation step. Therefore, screening of the aromatic moiety was difficult with dimethyl acetal. Changing the acetal moiety solved this low reactivity problem
-
-
-
-
55
-
-
0035819594
-
-
Absolute configurations of the products were determined based on the previous reports, see: See also Ref. 6a
-
Absolute configurations of the products were determined based on the previous reports, see: Ishikawa T., Araki Y., Kumamoto T., Seki H., Fukuda K., Isobe T. Chem. Commun. 2001;245. See also Ref. 6a
-
(2001)
Chem. Commun.
, pp. 245
-
-
Ishikawa, T.1
Araki, Y.2
Kumamoto, T.3
Seki, H.4
Fukuda, K.5
Isobe, T.6
-
56
-
-
3843112901
-
-
In the case of phase-transfer Michael additions, halobenzenes had better selectivity than other aromatic solvents, such as benzene and toluene. Although 1,2,4-trichlorobenzene gave the best selectivity, we eventually selected chlorobenzene based on the reactivity
-
In the case of phase-transfer Michael additions, halobenzenes had better selectivity than other aromatic solvents, such as benzene and toluene. Although 1,2,4-trichlorobenzene gave the best selectivity, we eventually selected chlorobenzene based on the reactivity
-
-
-
-
57
-
-
3843101091
-
-
Because of the relatively high melting point of chlorobenzene (-45°C), -30°C should be the lowest temperature used in this system. Other solvents, such as toluene, had worse selectivity
-
Because of the relatively high melting point of chlorobenzene (-45°C), -30°C should be the lowest temperature used in this system. Other solvents, such as toluene, had worse selectivity
-
-
-
-
58
-
-
3843054218
-
-
1H NMR, and TLC analysis. See also Section 4
-
1H NMR, and TLC analysis. See also Section 4
-
-
-
-
59
-
-
0028236160
-
-
Murakami M., Okita Y., Matsuda H., Okino T., Yamaguchi K. Tetrahedron Lett. 35:1994;3129
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 3129
-
-
Murakami, M.1
Okita, Y.2
Matsuda, H.3
Okino, T.4
Yamaguchi, K.5
-
61
-
-
0034669621
-
-
For previous syntheses of aeruginosin 298-A, see: (a)
-
For previous syntheses of aeruginosin 298-A, see: (a) Valls N., López-Canet M., Vallribera M., Bonjoch J. J. Am. Chem. Soc. 122:2000;11248
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 11248
-
-
Valls, N.1
López-Canet, M.2
Vallribera, M.3
Bonjoch, J.4
-
65
-
-
0347419458
-
-
Ohshima T., Nemoto T., Tosaki S.-., Kakei H., Gnanadesikan V., Shibasaki M. Tetrahedron. 59:2003;10485
-
(2003)
Tetrahedron
, vol.59
, pp. 10485
-
-
Ohshima, T.1
Nemoto, T.2
Tosaki, S.3
Kakei, H.4
Gnanadesikan, V.5
Shibasaki, M.6
-
67
-
-
0035928478
-
-
Jew S., Jeong B.-S., Yoo M.-S., Huh H., Park H. Chem. Commun. 2001;1244
-
(2001)
Chem. Commun.
, pp. 1244
-
-
Jew, S.1
Jeong, B.-S.2
Yoo, M.-S.3
Huh, H.4
Park, H.5
-
68
-
-
0035833090
-
-
Park H., Jeong B.-S., Yoo M.-S., Park M., Huh H., Jew S. Tetrahedron Lett. 42:2001;4645
-
(2001)
Tetrahedron Lett.
, vol.42
, pp. 4645
-
-
Park, H.1
Jeong, B.-S.2
Yoo, M.-S.3
Park, M.4
Huh, H.5
Jew, S.6
-
69
-
-
0037118894
-
-
Park H., Jeong B.-S., Yoo M.-S., Lee J.-H., Park M., Lee Y.-J., Kim M.-J., Jew S. Angew. Chem., Int. Ed. 41:2002;3036
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 3036
-
-
Park, H.1
Jeong, B.-S.2
Yoo, M.-S.3
Lee, J.-H.4
Park, M.5
Lee, Y.-J.6
Kim, M.-J.7
Jew, S.8
-
74
-
-
3843081377
-
-
Nagasawa et al. and Takabe et al. also proposed the Z-enolate complex with a chiral ammonium cation. See Ref. 10c,e.
-
Nagasawa et al. and Takabe et al. also proposed the Z-enolate complex with a chiral ammonium cation. See Ref. 10c,e.
-
-
-
|