메뉴 건너뛰기




Volumn 41, Issue 5, 2008, Pages 1548-1557

Approximate information discriminant analysis: A computationally simple heteroscedastic feature extraction technique

Author keywords

Bayes error; Classification; Entropy; Feature extraction; Information theory; Linear discriminant analysis; Mutual information

Indexed keywords

DISCRIMINANT ANALYSIS; ERROR ANALYSIS; FEATURE EXTRACTION; IMAGE CLASSIFICATION; LINEAR CONTROL SYSTEMS;

EID: 38349174498     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.10.001     Document Type: Article
Times cited : (41)

References (33)
  • 1
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • Rao C.R. The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. B Met. 10 2 (1948) 159-203
    • (1948) J. R. Stat. Soc. B Met. , vol.10 , Issue.2 , pp. 159-203
    • Rao, C.R.1
  • 2
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 7 (1936) 179-188
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 3
    • 0032289099 scopus 로고    scopus 로고
    • Heteroscedastic discriminant analysis and reduced rank hmms for improved speech recognition
    • Kumar N., and Andreou A.G. Heteroscedastic discriminant analysis and reduced rank hmms for improved speech recognition. Speech Commun. 26 4 (1998) 283-297
    • (1998) Speech Commun. , vol.26 , Issue.4 , pp. 283-297
    • Kumar, N.1    Andreou, A.G.2
  • 4
    • 33751558390 scopus 로고    scopus 로고
    • K. Torkkola, Discriminative features for document classification, in: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, 2002, pp. 472-475.
  • 5
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • Chen L.-F., Liao H.-Y.M., M-T. K., Lin J.-C., and Yu G.-J. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33 10 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1713-1726
    • Chen, L.-F.1    Liao, H.-Y.M.2    M-T., K.3    Lin, J.-C.4    Yu, G.-J.5
  • 8
    • 38349190419 scopus 로고    scopus 로고
    • H.P. Decell, J.A. Quirein, An iterative approach to the feature selection problem, in: Proceedings of Purdue Conference on Machine Processing of Remotely Sensed Data, 1972, pp. 3B1-3B12.
  • 9
    • 38349110397 scopus 로고    scopus 로고
    • G. Saon, M. Padmanabhan, Minimum Bayes error feature selection for continuous speech recognition, in: NIPS, 2000, pp. 800-806.
  • 10
    • 34447277147 scopus 로고    scopus 로고
    • Information discriminant analysis: feature extraction with and information theoretic objective
    • Nenadic Z. Information discriminant analysis: feature extraction with and information theoretic objective. IEEE Trans. Pattern Anal. 29 8 (2007) 1394-1407
    • (2007) IEEE Trans. Pattern Anal. , vol.29 , Issue.8 , pp. 1394-1407
    • Nenadic, Z.1
  • 13
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion
    • Loog M., and Duin R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. Pattern Anal. 26 (2004) 732-739
    • (2004) IEEE Trans. Pattern Anal. , vol.26 , pp. 732-739
    • Loog, M.1    Duin, R.P.W.2
  • 14
    • 0019999412 scopus 로고
    • Linear dimension reduction and Bayes classification with unknown population parameters
    • Tubbs J.D., Coberly W.A., and Young D.M. Linear dimension reduction and Bayes classification with unknown population parameters. Pattern Recognition 15 3 (1982) 167-172
    • (1982) Pattern Recognition , vol.15 , Issue.3 , pp. 167-172
    • Tubbs, J.D.1    Coberly, W.A.2    Young, D.M.3
  • 15
    • 0034300876 scopus 로고    scopus 로고
    • Feature reduction for classification of multidimensional data
    • Brunzell H., and Eriksson J. Feature reduction for classification of multidimensional data. Pattern Recognition 33 10 (2000) 1741-1748
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1741-1748
    • Brunzell, H.1    Eriksson, J.2
  • 17
    • 30144436546 scopus 로고    scopus 로고
    • Where are linear feature extraction methods applicable?
    • Zhu M., and Martinez A.M. Where are linear feature extraction methods applicable?. IEEE Trans. Pattern Anal. 27 12 (2005) 1934-1944
    • (2005) IEEE Trans. Pattern Anal. , vol.27 , Issue.12 , pp. 1934-1944
    • Zhu, M.1    Martinez, A.M.2
  • 18
    • 33748159278 scopus 로고    scopus 로고
    • Subclass discriminant analysis
    • Zhu M., and Martinez A.M. Subclass discriminant analysis. IEEE Trans. Pattern Anal. 28 8 (2006) 1274-1286
    • (2006) IEEE Trans. Pattern Anal. , vol.28 , Issue.8 , pp. 1274-1286
    • Zhu, M.1    Martinez, A.M.2
  • 19
    • 33746412073 scopus 로고    scopus 로고
    • Learning weighted metrics to minimize nearest-neighbor classification error
    • Paredes R. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans. Pattern Anal. 28 7 (2006) 1100-1110
    • (2006) IEEE Trans. Pattern Anal. , vol.28 , Issue.7 , pp. 1100-1110
    • Paredes, R.1
  • 20
    • 84915005479 scopus 로고
    • Probability of error, equivocation, and the Chernoff bound
    • Hellman M.E., and Raviv J. Probability of error, equivocation, and the Chernoff bound. IEEE Trans. Inf. Theory IT-16 4 (1970) 368-372
    • (1970) IEEE Trans. Inf. Theory , vol.IT-16 , Issue.4 , pp. 368-372
    • Hellman, M.E.1    Raviv, J.2
  • 21
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 4 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 23
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola K. Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3 (2003) 1415-1438
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 25
    • 38349154785 scopus 로고    scopus 로고
    • S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998, University of California, Irvine, Department of Information and Computer Sciences, 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
  • 26
    • 38349111582 scopus 로고    scopus 로고
    • Advances in cognitive neural prosthesis: Recognition of neural data with an information-theoretic objective
    • Dornhege G., Millan J.R., Hinterberger T., McFarland D.J., and Muller K.-R. (Eds), MIT Press, Cambridge, MA
    • Nenadic Z., Rizzuto D.S., Andersen R.A., and Burdick J.W. Advances in cognitive neural prosthesis: Recognition of neural data with an information-theoretic objective. In: Dornhege G., Millan J.R., Hinterberger T., McFarland D.J., and Muller K.-R. (Eds). Toward Brain Computer Interfacing (2007), MIT Press, Cambridge, MA 175-190
    • (2007) Toward Brain Computer Interfacing , pp. 175-190
    • Nenadic, Z.1    Rizzuto, D.S.2    Andersen, R.A.3    Burdick, J.W.4
  • 27
    • 38349102953 scopus 로고    scopus 로고
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: International Joint Conference on Artificial Intelligence, 1995, pp. 1137-1145.
  • 29
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schäfer J., and Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4 1 (2005) Article 32
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4 , Issue.1
    • Schäfer, J.1    Strimmer, K.2
  • 30
    • 0001765951 scopus 로고    scopus 로고
    • A direct lda algorithm for high-dimensional data-with application to face recognition
    • Yu H., and Yang H. A direct lda algorithm for high-dimensional data-with application to face recognition. Pattern Recogn. Lett. 34 10 (2001) 2067-2070
    • (2001) Pattern Recogn. Lett. , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, H.2
  • 31
    • 5044231639 scopus 로고    scopus 로고
    • X. Wang, X. Tang, Dual-space linear discriminant analysis for face recognition, in: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04), vol. 02, 2004, pp. 564-569.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.