메뉴 건너뛰기




Volumn 23, Issue 4, 2007, Pages 354-362

Connection between the order of fractional calculus and fractional dimensions of a type of fractal functions

Author keywords

Fractal dimension; Generalized Weierstrass function; Graph; Linear; Riemann Liouville fractional calculus

Indexed keywords


EID: 38349050508     PISSN: 16724070     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10496-007-0354-8     Document Type: Article
Times cited : (23)

References (13)
  • 2
    • 0001191670 scopus 로고
    • Fractal Dimensions and Singularities of the Weierstrass Type Functions
    • 2
    • Hu, T. Y. and Lau, K.S., Fractal Dimensions and Singularities of the Weierstrass Type Functions, Trans. Amer. Math. Soc., 335:2(1993), 649-665.
    • (1993) Trans. Amer. Math. Soc. , vol.335 , pp. 649-665
    • Hu, T.Y.1    Lau, K.S.2
  • 4
    • 0040655648 scopus 로고    scopus 로고
    • Fractional Differentiability of Nowhere Differentiable Functions and Dimensions
    • 4
    • Kolwankar, K. M. and Gangal, A. D., Fractional Differentiability of Nowhere Differentiable Functions and Dimensions, Chaos 6:4(1996), 505-513.
    • (1996) Chaos , vol.6 , pp. 505-513
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 6
    • 0000162804 scopus 로고
    • The Relationship between Fractional Calculus and Fractals
    • 1
    • Tatom, F. B., The Relationship Between Fractional Calculus and Fractals, Fractals 3:1(1995), 217-229.
    • (1995) Fractals , vol.3 , pp. 217-229
    • Tatom, F.B.1
  • 7
    • 0037835129 scopus 로고    scopus 로고
    • Shanghai Science and Technology Educational Publishing House Shanghai
    • Wen, Z. Y., Mathematical Foundations of Fractal Geometry, Shanghai: Shanghai Science and Technology Educational Publishing House; 2000[in Chinese].
    • (2000) Mathematical Foundations of Fractal Geometry
    • Wen, Z.Y.1
  • 8
    • 4243138250 scopus 로고    scopus 로고
    • On the Connection between the Order of Fractional Calculus and the Dimensions of a Fractal Function, Chaos
    • Yao, K., Su, W. Y. and Zhou, S. P., On the Connection Between the Order of Fractional Calculus and the Dimensions of a Fractal Function, Chaos, Solitons & Fractals, 23(2005), 621-629.
    • (2005) Solitons & Fractals , vol.23 , pp. 621-629
    • Yao, K.1    Su, W.Y.2    Zhou, S.P.3
  • 9
    • 0030378638 scopus 로고    scopus 로고
    • Fractional Derivatives of Weierstrass-type Functions
    • Zähle, M. and Ziezold, H., Fractional Derivatives of Weierstrass-type Functions, J Computat Appl. Math., 76(1996), 265-275.
    • (1996) J Computat Appl. Math. , vol.76 , pp. 265-275
    • Zähle, M.1    Ziezold, H.2
  • 10
    • 34548530575 scopus 로고    scopus 로고
    • On the Fractional Calculus of a Type of Weierstrass Function
    • A
    • Yao, K., Su, W. Y. and Zhou, S. P., On the Fractional Calculus of a Type of Weierstrass Function, Chinese Annals of Mathematics 25:A(2004), 711-716.
    • (2004) Chinese Annals of Mathematics , vol.25 , pp. 711-716
    • Yao, K.1    Su, W.Y.2    Zhou, S.P.3
  • 11
    • 34247152508 scopus 로고    scopus 로고
    • The Relationship between the Fractal Dimensions of a Type of Fractal Functions and the Order of Their Fractional Calculus, Chaos
    • Liang, Y.S. and Su, W. Y., The Relationship Between the Fractal Dimensions of a Type of Fractal Functions and the Order of Their Fractional Calculus, Chaos, Solitons and Fractals, 34(2007), 682-692.
    • (2007) Solitons and Fractals , vol.34 , pp. 682-692
    • Liang, Y.S.1    Su, W.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.