-
2
-
-
0001191670
-
Fractal dimensions and singularities of the Weierstrass type functions
-
Hu T.Y., Lau K.S. Fractal dimensions and singularities of the Weierstrass type functions. Trans. Amer. Math. Soc. 335(2):1993;649-665.
-
(1993)
Trans. Amer. Math. Soc.
, vol.335
, Issue.2
, pp. 649-665
-
-
Hu, T.Y.1
Lau, K.S.2
-
3
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos. 6(4):1996;505-513.
-
(1996)
Chaos
, vol.6
, Issue.4
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
7
-
-
84976112016
-
The packing measure of the graphs and level sets of certain continuous functions
-
Rezakhanlou F. The packing measure of the graphs and level sets of certain continuous functions. Math. Proc. Camb. Philos. Soc. 104:1988;347-360.
-
(1988)
Math. Proc. Camb. Philos. Soc.
, vol.104
, pp. 347-360
-
-
Rezakhanlou, F.1
-
9
-
-
0000162804
-
The relationship between fractional calculus and fractals
-
Tatom F.B. The relationship between fractional calculus and fractals. Fractals. 3(1):1995;217-229.
-
(1995)
Fractals
, vol.3
, Issue.1
, pp. 217-229
-
-
Tatom, F.B.1
-
10
-
-
4243192055
-
On the fractional integrals of a type of Weierstrass function
-
[to appear]
-
Yao K, WeiYi S, Zhou SP. On the fractional integrals of a type of Weierstrass function. Chinese Ann Math [to appear].
-
Chinese Ann Math
-
-
Yao, K.1
Weiyi, S.2
Zhou, S.P.3
-
11
-
-
0037835129
-
-
Shanghai: Shanghai Science and Technology Educational Publishing House. [in Chinese]
-
Wen Z.Y. Mathematical foundations of fractal geometry. 2000;Shanghai Science and Technology Educational Publishing House, Shanghai. [in Chinese].
-
(2000)
Mathematical Foundations of Fractal Geometry
-
-
Wen, Z.Y.1
-
12
-
-
0031447221
-
Fractional differentiation in self-affine case V - The local degree of differentiability
-
Zähle M. Fractional differentiation in self-affine case V - the local degree of differentiability. Math. Nachr. 185:1997;279-306.
-
(1997)
Math. Nachr.
, vol.185
, pp. 279-306
-
-
Zähle, M.1
-
13
-
-
0030378638
-
Fractional derivatives of Weierstrass-type functions
-
Zähle M., Ziezold H. Fractional derivatives of Weierstrass-type functions. J. Computat. Appl. Math. 76:1996;265-275.
-
(1996)
J. Computat. Appl. Math.
, vol.76
, pp. 265-275
-
-
Zähle, M.1
Ziezold, H.2
-
14
-
-
0141504332
-
On a class of fractals: The constructive structure
-
Zhou S.P., He G.L., Xie T.F. On a class of fractals: the constructive structure. Chaos, Solitons & Fractals. (19):2004;1099-1104.
-
(2004)
Chaos, Solitons & Fractals
, Issue.19
, pp. 1099-1104
-
-
Zhou, S.P.1
He, G.L.2
Xie, T.F.3
-
15
-
-
0344924855
-
Accelerating universe, and other relevant consequences of a stochastic self-similar and fractal universe
-
Inovane G., Varying G. Accelerating universe, and other relevant consequences of a stochastic self-similar and fractal universe. Chaos, Solitons & Fractals. 20:2004;657-667.
-
(2004)
Chaos, Solitons & Fractals
, vol.20
, pp. 657-667
-
-
Inovane, G.1
Varying, G.2
-
16
-
-
0344493807
-
∞ manifold and high energy particle physics
-
∞ manifold and high energy particle physics Chaos, Solitons & Fractals. 20:2004;669-682.
-
(2004)
Chaos, Solitons & Fractals
, vol.20
, pp. 669-682
-
-
Marek-Crnjac, L.1
-
17
-
-
0942266800
-
How gravitational instanton could solve the mass problem of the standard model of high energy practical physics
-
El Naschie M.S. How gravitational instanton could solve the mass problem of the standard model of high energy practical physics. Chaos, Solitons & Fractals. 21:2004;249-260.
-
(2004)
Chaos, Solitons & Fractals
, vol.21
, pp. 249-260
-
-
El Naschie, M.S.1
-
18
-
-
0141615842
-
Quantum gravity from descriptive set theory
-
El Naschie M.S. Quantum gravity from descriptive set theory. Chaos, Solitons & Fractals. 19:2004;1339-1344.
-
(2004)
Chaos, Solitons & Fractals
, vol.19
, pp. 1339-1344
-
-
El Naschie, M.S.1
|