메뉴 건너뛰기




Volumn 4477 LNCS, Issue PART 1, 2007, Pages 47-54

Feature selection based on a new formulation of the minimal-redundancy- maximal-relevance criterion

Author keywords

[No Author keywords available]

Indexed keywords

DATA STRUCTURES; IMAGE CLASSIFICATION; INFORMATION THEORY;

EID: 38149029145     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-72847-4_8     Document Type: Conference Paper
Times cited : (12)

References (7)
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273-324 (1997)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 3
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226-1238 (2005)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 6
    • 10044235999 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • available at
    • Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. (2001)
    • (2001) Software
    • Chang, C.C.1    Lin, C.J.2
  • 7
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10(7), 1895-1923 (1998)
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.