-
2
-
-
0034826416
-
A sieve algorithm for the shortest lattice vector problem
-
ACM Press, New York
-
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the 33th ACM Symposium on Theory of Computing, pp. 601-610. ACM Press, New York (2001)
-
(2001)
Proceedings of the 33th ACM Symposium on Theory of Computing
, pp. 601-610
-
-
Ajtai, M.1
Kumar, R.2
Sivakumar, D.3
-
3
-
-
0036287568
-
Sampling short lattice vectors and the closest lattice vector problem
-
IEEE Computer Society Press, Los Alamitos
-
Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proceedings of the 17th IEEE Annual Conference on Computational Complexity - CCC, pp. 53-57. IEEE Computer Society Press, Los Alamitos (2002)
-
(2002)
Proceedings of the 17th IEEE Annual Conference on Computational Complexity
, vol.300
, pp. 53-57
-
-
Ajtai, M.1
Kumar, R.2
Sivakumar, D.3
-
4
-
-
51249173801
-
On Lovász' lattice reduction and the nearest lattice point problem
-
Babai, L.: On Lovász' lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1-13 (1986)
-
(1986)
Combinatorica
, vol.6
, Issue.1
, pp. 1-13
-
-
Babai, L.1
-
5
-
-
84974652955
-
Closest vectors, successive minima, and dual HKZ-bases of lattices
-
Welzl, E, Montanari, U, Rolim, J.D.P, eds, ICALP 2000, Springer, Heidelberg
-
Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 248-259. Springer, Heidelberg (2000)
-
(2000)
LNCS
, vol.1853
, pp. 248-259
-
-
Blömer, J.1
-
7
-
-
0025720957
-
A random polynomial time algorithm for approximating the volume of convex bodies
-
Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. Journal of the ACM 38(1), 1-17 (1991)
-
(1991)
Journal of the ACM
, vol.38
, Issue.1
, pp. 1-17
-
-
Dyer, M.1
Frieze, A.2
Kannan, R.3
-
8
-
-
0141655066
-
Approximating CVP to within almost-polynomial factors in NP-hard
-
Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within almost-polynomial factors in NP-hard. Combinatorica 23(2), 205-243 (2003)
-
(2003)
Combinatorica
, vol.23
, Issue.2
, pp. 205-243
-
-
Dinur, I.1
Kindler, G.2
Raz, R.3
Safra, S.4
-
9
-
-
0000351029
-
Algorithmic geometry of numbers. Annual Reviews in Computer
-
Kannan, R.: Algorithmic geometry of numbers. Annual Reviews in Computer Science 2, 231-267 (1987)
-
(1987)
Science
, vol.2
, pp. 231-267
-
-
Kannan, R.1
-
10
-
-
0000126406
-
Minkowski's convex body theorem and integer programming
-
Kannan, R.: Minkowski's convex body theorem and integer programming. Mathematics of Operations Research 12(3), 415-440 (1987)
-
(1987)
Mathematics of Operations Research
, vol.12
, Issue.3
, pp. 415-440
-
-
Kannan, R.1
-
11
-
-
27344453570
-
Hardness of approximating the shortest vector problem in lattices
-
Khot, S.: Hardness of approximating the shortest vector problem in lattices. Journal of the ACM (JACM) 52(5), 789-808 (2005)
-
(2005)
Journal of the ACM (JACM)
, vol.52
, Issue.5
, pp. 789-808
-
-
Khot, S.1
-
12
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515-534 (1982)
-
(1982)
Mathematische Annalen
, vol.261
, pp. 515-534
-
-
Lenstra, A.K.1
Lenstra, H.W.2
Lovász, L.3
-
14
-
-
0035707359
-
The shortest vector in a lattice is hard to approximate to within some constant
-
Micciancio, D.: The shortest vector in a lattice is hard to approximate to within some constant. SIAM Journal on Computing 30(6), 2008-2035 (2000)
-
(2000)
SIAM Journal on Computing
, vol.30
, Issue.6
, pp. 2008-2035
-
-
Micciancio, D.1
-
15
-
-
85088688376
-
-
(n)-time algorithm for SVP (2004)
-
(n)-time algorithm for SVP (2004)
-
-
-
-
16
-
-
0023532388
-
A hierarchy of polynomial time lattice basis reduction algorithms
-
Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science 53, 201-224 (1987)
-
(1987)
Theoretical Computer Science
, vol.53
, pp. 201-224
-
-
Schnorr, C.-P.1
-
17
-
-
84974183411
-
Block reduced lattice bases and successive minima
-
Schnorr, C.-P.: Block reduced lattice bases and successive minima. Combinatorics, Probability & Computing 3, 507-522 (1994)
-
(1994)
Combinatorics, Probability & Computing
, vol.3
, pp. 507-522
-
-
Schnorr, C.-P.1
|