메뉴 건너뛰기




Volumn 4596 LNCS, Issue , 2007, Pages 65-77

Sampling methods for shortest vectors, closest vectors and successive minima

Author keywords

[No Author keywords available]

Indexed keywords

GEOMETRY; POLYNOMIALS; PROBLEM SOLVING; VECTORS;

EID: 38149019948     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-73420-8_8     Document Type: Conference Paper
Times cited : (24)

References (17)
  • 4
    • 51249173801 scopus 로고
    • On Lovász' lattice reduction and the nearest lattice point problem
    • Babai, L.: On Lovász' lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1-13 (1986)
    • (1986) Combinatorica , vol.6 , Issue.1 , pp. 1-13
    • Babai, L.1
  • 5
    • 84974652955 scopus 로고    scopus 로고
    • Closest vectors, successive minima, and dual HKZ-bases of lattices
    • Welzl, E, Montanari, U, Rolim, J.D.P, eds, ICALP 2000, Springer, Heidelberg
    • Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 248-259. Springer, Heidelberg (2000)
    • (2000) LNCS , vol.1853 , pp. 248-259
    • Blömer, J.1
  • 6
  • 7
    • 0025720957 scopus 로고
    • A random polynomial time algorithm for approximating the volume of convex bodies
    • Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. Journal of the ACM 38(1), 1-17 (1991)
    • (1991) Journal of the ACM , vol.38 , Issue.1 , pp. 1-17
    • Dyer, M.1    Frieze, A.2    Kannan, R.3
  • 8
    • 0141655066 scopus 로고    scopus 로고
    • Approximating CVP to within almost-polynomial factors in NP-hard
    • Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within almost-polynomial factors in NP-hard. Combinatorica 23(2), 205-243 (2003)
    • (2003) Combinatorica , vol.23 , Issue.2 , pp. 205-243
    • Dinur, I.1    Kindler, G.2    Raz, R.3    Safra, S.4
  • 9
    • 0000351029 scopus 로고
    • Algorithmic geometry of numbers. Annual Reviews in Computer
    • Kannan, R.: Algorithmic geometry of numbers. Annual Reviews in Computer Science 2, 231-267 (1987)
    • (1987) Science , vol.2 , pp. 231-267
    • Kannan, R.1
  • 10
    • 0000126406 scopus 로고
    • Minkowski's convex body theorem and integer programming
    • Kannan, R.: Minkowski's convex body theorem and integer programming. Mathematics of Operations Research 12(3), 415-440 (1987)
    • (1987) Mathematics of Operations Research , vol.12 , Issue.3 , pp. 415-440
    • Kannan, R.1
  • 11
    • 27344453570 scopus 로고    scopus 로고
    • Hardness of approximating the shortest vector problem in lattices
    • Khot, S.: Hardness of approximating the shortest vector problem in lattices. Journal of the ACM (JACM) 52(5), 789-808 (2005)
    • (2005) Journal of the ACM (JACM) , vol.52 , Issue.5 , pp. 789-808
    • Khot, S.1
  • 14
    • 0035707359 scopus 로고    scopus 로고
    • The shortest vector in a lattice is hard to approximate to within some constant
    • Micciancio, D.: The shortest vector in a lattice is hard to approximate to within some constant. SIAM Journal on Computing 30(6), 2008-2035 (2000)
    • (2000) SIAM Journal on Computing , vol.30 , Issue.6 , pp. 2008-2035
    • Micciancio, D.1
  • 15
    • 85088688376 scopus 로고    scopus 로고
    • (n)-time algorithm for SVP (2004)
    • (n)-time algorithm for SVP (2004)
  • 16
    • 0023532388 scopus 로고
    • A hierarchy of polynomial time lattice basis reduction algorithms
    • Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science 53, 201-224 (1987)
    • (1987) Theoretical Computer Science , vol.53 , pp. 201-224
    • Schnorr, C.-P.1
  • 17
    • 84974183411 scopus 로고
    • Block reduced lattice bases and successive minima
    • Schnorr, C.-P.: Block reduced lattice bases and successive minima. Combinatorics, Probability & Computing 3, 507-522 (1994)
    • (1994) Combinatorics, Probability & Computing , vol.3 , pp. 507-522
    • Schnorr, C.-P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.