메뉴 건너뛰기




Volumn 4827 LNAI, Issue , 2007, Pages 399-408

Evolutionary feature and parameter selection in support vector regression

Author keywords

Feature selection; Self adaptive genetic algorithm; Support vector regression

Indexed keywords

GENETIC ALGORITHMS; REGRESSION ANALYSIS; SELF ADJUSTING CONTROL SYSTEMS;

EID: 38149010380     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-76631-5_38     Document Type: Conference Paper
Times cited : (11)

References (25)
  • 1
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines. MACHLEARN
    • Guyon, W., Barnhill, V.: Gene selection for cancer classification using support vector machines. MACHLEARN: Machine Learning 46 (2002)
    • (2002) Machine Learning , vol.46
    • Guyon, W.1    Barnhill, V.2
  • 2
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Huang, Z., Chen, H., Hsu, C.J., Chen, W.H., Wu, S.: Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems 37(4), 543-558 (2004)
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.J.3    Chen, W.H.4    Wu, S.5
  • 3
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim, K.J.: Financial time series forecasting using support vector machines. Neurocomputing 55(1-2), 307-319 (2003)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 307-319
    • Kim, K.J.1
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121-167 (1998)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1/3), 131 (2002)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0026966646 scopus 로고    scopus 로고
    • Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: COLT, pp. 144-152 (1992)
    • Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: COLT, pp. 144-152 (1992)
  • 9
    • 33751376274 scopus 로고    scopus 로고
    • Evolutionary training of svm for multiple category classification problems with self-adaptive parameters
    • Simão-Sichman, J, Coelho, H, Oliveira-Rezende, S, eds, IBERAMIA/SBIA 2006, Springer, Heidelberg
    • Kuri-Morales, A., Mejia-Guevara, L: Evolutionary training of svm for multiple category classification problems with self-adaptive parameters. In: Simão-Sichman, J., Coelho, H., Oliveira-Rezende, S. (eds.) IBERAMIA/SBIA 2006. LNCS (LNAI), pp. 329-338. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI , pp. 329-338
    • Kuri-Morales, A.1    Mejia-Guevara, L.2
  • 10
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17(1), 113-126 (2004)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 13
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple svm parameters
    • Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. Neurocomputing 64, 107-117 (2005)
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 17
    • 38149136783 scopus 로고    scopus 로고
    • A Comprehensive Approach to Genetic Algorithms in Optimization, and Learning
    • IPN
    • Kuri, A.: A Comprehensive Approach to Genetic Algorithms in Optimization, and Learning. Theory and Applications, Foundations, vol. 1. IPN (1999)
    • (1999) Theory and Applications, Foundations , vol.1
    • Kuri, A.1
  • 18
    • 84942897651 scopus 로고    scopus 로고
    • Kuri-Morales, A.F.: A methodology for the statistical characterization of genetic algorithms. In: Coello Coello, C.A., de Albornoz, A., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), 2313, Springer, Heidelberg (2002)
    • Kuri-Morales, A.F.: A methodology for the statistical characterization of genetic algorithms. In: Coello Coello, C.A., de Albornoz, A., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, Springer, Heidelberg (2002)
  • 19
    • 85061370427 scopus 로고    scopus 로고
    • Galaviz, J., Kuri, A.: A self-adaptive genetic algorithm for function optimization. In: ISAI/IFIPS, p. 156 (1996)
    • Galaviz, J., Kuri, A.: A self-adaptive genetic algorithm for function optimization. In: ISAI/IFIPS, p. 156 (1996)
  • 20
    • 33748076461 scopus 로고    scopus 로고
    • A ga-based feature selection and parameters optimization for support vector machines
    • Huang, C.L., Wang, C.J.: A ga-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231-240 (2006)
    • (2006) Expert Syst. Appl , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 21
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • Min, S.H., Lee, J., Han, I.: Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Syst. Appl. 31(3), 652-660 (2006)
    • (2006) Expert Syst. Appl , vol.31 , Issue.3 , pp. 652-660
    • Min, S.H.1    Lee, J.2    Han, I.3
  • 22
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf, B, Burges, C.J.C, Smola, A.J, eds, MIT Press, Cambridge
    • Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods -Support Vector Learning, pp. 185-208. MIT Press, Cambridge (1999)
    • (1999) Advances in Kernel Methods -Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 25
    • 84887014023 scopus 로고    scopus 로고
    • Abe, S.: Modified backward feature selection by cross validation. In: ESANN, pp. 163-168 (2005)
    • Abe, S.: Modified backward feature selection by cross validation. In: ESANN, pp. 163-168 (2005)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.