메뉴 건너뛰기




Volumn 4372 LNCS, Issue , 2007, Pages 42-53

Eigensolver methods for progressive multidimensional scaling of large data

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; NUMERICAL METHODS;

EID: 38149007264     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-70904-6_6     Document Type: Conference Paper
Times cited : (142)

References (32)
  • 1
    • 0032665137 scopus 로고    scopus 로고
    • Incremental multidimensional scaling method for database visualization
    • W. Basalaj. Incremental multidimensional scaling method for database visualization. In Proc. VDA, pages 149-158, 1999.
    • (1999) Proc. VDA , pp. 149-158
    • Basalaj, W.1
  • 2
    • 33947233031 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering
    • Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In NIPS, pages 307-311, 2004.
    • (2004) NIPS , pp. 307-311
    • Bengio, Y.1    Paiement, J.-F.2    Vincent, P.3    Delalleau, O.4    Le Roux, N.5    Ouimet, M.6
  • 4
    • 0036882181 scopus 로고    scopus 로고
    • Visualization methodology for multidimensional scaling
    • A. Buja and D. F. Swayne. Visualization methodology for multidimensional scaling. J. Classification, 19:7-43, 2002.
    • (2002) J. Classification , vol.19 , pp. 7-43
    • Buja, A.1    Swayne, D.F.2
  • 5
    • 33644839685 scopus 로고    scopus 로고
    • Geometric methods for feature extraction and dimensional reduction
    • Technical report, Microsoft Research
    • C. J. C. Burges. Geometric methods for feature extraction and dimensional reduction. Technical report, Microsoft Research, 2004.
    • (2004)
    • Burges, C.J.C.1
  • 6
    • 0030406791 scopus 로고    scopus 로고
    • A linear iteration time layout algorithm for visualizing high-dimensional data
    • IEEE
    • M. Chalmers. A linear iteration time layout algorithm for visualizing high-dimensional data. In Proc. InfoVis, pages 127-132. IEEE, 1996.
    • (1996) Proc. InfoVis , pp. 127-132
    • Chalmers, M.1
  • 10
    • 84899009769 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • V. de Silva and J. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In Proc. NIPS, pages 721-728, 2003.
    • (2003) Proc. NIPS , pp. 721-728
    • de Silva, V.1    Tenenbaum, J.2
  • 11
    • 84976803260 scopus 로고
    • FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia dataseis
    • C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia dataseis. In Proc. ACM SIGMOD, pages 163-174, 1995.
    • (1995) Proc. ACM SIGMOD , pp. 163-174
    • Faloutsos, C.1    Lin, K.2
  • 14
    • 38149073795 scopus 로고    scopus 로고
    • An experimental comparison of fast algorithms for drawing general large graphs
    • S. Hachul and M. Jünger. An experimental comparison of fast algorithms for drawing general large graphs. In Proc. Graph Drawing, pages 235-250, 2005.
    • (2005) Proc. Graph Drawing , pp. 235-250
    • Hachul, S.1    Jünger, M.2
  • 15
    • 16244384883 scopus 로고    scopus 로고
    • Graph drawing by high-dimensional embedding
    • D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In Proc. Graph Drawing, pages 388-393, 2002.
    • (2002) Proc. Graph Drawing , pp. 388-393
    • Harel, D.1    Koren, Y.2
  • 16
    • 4644318310 scopus 로고    scopus 로고
    • Multiscale hybrid MDS
    • IEEE
    • F. Jourdan and G. Melançon. Multiscale hybrid MDS. In Proc. IV, pages 388-393. IEEE, 2004.
    • (2004) Proc. IV , pp. 388-393
    • Jourdan, F.1    Melançon, G.2
  • 17
    • 38149109625 scopus 로고    scopus 로고
    • Personal communication
    • Charles Kadushin. Personal communication.
    • Kadushin, C.1
  • 18
    • 0024640140 scopus 로고
    • An algorithm for drawing general undirected graphs
    • T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, 31:7-15, 1989.
    • (1989) Information Processing Letters , vol.31 , pp. 7-15
    • Kamada, T.1    Kawai, S.2
  • 19
    • 24144447976 scopus 로고    scopus 로고
    • Graph drawing by subspace optimization
    • Y. Koren. Graph drawing by subspace optimization. In Proc. VisSym, pages 65-74, 2004.
    • (2004) Proc. VisSym , pp. 65-74
    • Koren, Y.1
  • 20
    • 84935030768 scopus 로고    scopus 로고
    • ACE: A fast multiscale eigenvectors computation for drawing huge graphs
    • IEEE
    • Y. Koren, L. Carmel, and D. Harel. ACE: A fast multiscale eigenvectors computation for drawing huge graphs. In Proc. InfoVis, pages 137-144. IEEE, 2002.
    • (2002) Proc. InfoVis , pp. 137-144
    • Koren, Y.1    Carmel, L.2    Harel, D.3
  • 21
    • 84867942597 scopus 로고    scopus 로고
    • One-dimensional layout optimization, with applications to graph drawing by axis separation
    • Y. Koren and D. Harel. One-dimensional layout optimization, with applications to graph drawing by axis separation. Computational Geometry: Theory and Applications, 32:115-138, 2005.
    • (2005) Computational Geometry: Theory and Applications , vol.32 , pp. 115-138
    • Koren, Y.1    Harel, D.2
  • 22
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis
    • J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika, 29(1):1-27, 1964.
    • (1964) Psychometrika , vol.29 , Issue.1 , pp. 1-27
    • Kruskal, J.B.1
  • 23
    • 38149117826 scopus 로고
    • A geometric interpretation of diagnostic data from a digital machine: Based on a study of the Morris, Illinois, Electronic Central Office
    • J. B. Kruskal and R. E. Hart. A geometric interpretation of diagnostic data from a digital machine: Based on a study of the Morris, Illinois, Electronic Central Office. Bell Sys. Tech. J., 45(8):1299-1338, 1966.
    • (1966) Bell Sys. Tech. J , vol.45 , Issue.8 , pp. 1299-1338
    • Kruskal, J.B.1    Hart, R.E.2
  • 25
    • 78649543318 scopus 로고    scopus 로고
    • Improving hybrid MDS with pivot-based searching
    • IEEE
    • A. Morrison and M. Chalmers. Improving hybrid MDS with pivot-based searching. In Proc. InfoVis, pages 85-90. IEEE, 2003.
    • (2003) Proc. InfoVis , pp. 85-90
    • Morrison, A.1    Chalmers, M.2
  • 26
    • 84948741096 scopus 로고    scopus 로고
    • A hybrid layout algorithm for subquadratic multidimensional scaling
    • IEEE
    • A. Morrison, G. Ross, and M. Chalmers. A hybrid layout algorithm for subquadratic multidimensional scaling. In Proc. InfoVis, pages 152-158. IEEE, 2002.
    • (2002) Proc. InfoVis , pp. 152-158
    • Morrison, A.1    Ross, G.2    Chalmers, M.3
  • 27
    • 33750735882 scopus 로고    scopus 로고
    • FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms
    • Technical report, Microsoft Research
    • J. C. Piatt. FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms. Technical report, Microsoft Research, 2004.
    • (2004)
    • Piatt, J.C.1
  • 28
    • 33750733400 scopus 로고    scopus 로고
    • Spectral methods for dimensionality reduction
    • B. Schölkopf, O. Chapelle, and A. Zien, editors, MIT Press, To appear
    • L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods for dimensionality reduction. In B. Schölkopf, O. Chapelle, and A. Zien, editors, Semi-Supervised Learning. MIT Press, 2006. To appear.
    • (2006) Semi-Supervised Learning
    • Saul, L.K.1    Weinberger, K.Q.2    Ham, J.H.3    Sha, F.4    Lee, D.D.5
  • 29
    • 84864030919 scopus 로고    scopus 로고
    • Selecting landmark points for sparse manifold learning
    • J. G. Silva, J. S. Marques, and J. M. Lemos. Selecting landmark points for sparse manifold learning. In Proc. NIPS, 2005.
    • (2005) Proc. NIPS
    • Silva, J.G.1    Marques, J.S.2    Lemos, J.M.3
  • 30
    • 84950351930 scopus 로고
    • Multidimensional scaling: I. Theory and Method
    • W. S. Torgerson. Multidimensional scaling: I. Theory and Method. Psychometrika, 17:401-419, 1952.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 31
    • 0009975204 scopus 로고    scopus 로고
    • Evaluating a class of distance-mapping algorithms for data mining and clustering
    • J. T.-L. Wang, X. Wang, K. Lin, D. Shasha, B. A. Shapiro, and K. Zhang. Evaluating a class of distance-mapping algorithms for data mining and clustering. In Proc. KDD, pages 307-311, 1999.
    • (1999) Proc. KDD , pp. 307-311
    • Wang, J.T.-L.1    Wang, X.2    Lin, K.3    Shasha, D.4    Shapiro, B.A.5    Zhang, K.6
  • 32
    • 16244412939 scopus 로고    scopus 로고
    • Steerable, progressive multidimensional scaling
    • IEEE
    • M. Williams and T. Munzner. Steerable, progressive multidimensional scaling. In Proc. InfoVis, pages 57-64. IEEE, 2004.
    • (2004) Proc. InfoVis , pp. 57-64
    • Williams, M.1    Munzner, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.