-
2
-
-
84947807317
-
Open theoretical questions in reinforcement learning
-
Richard S. Sutton. Open theoretical questions in reinforcement learning. In EuroCOLT, pages 11-17, 1999.
-
(1999)
EuroCOLT
, pp. 11-17
-
-
Sutton, R.S.1
-
5
-
-
0036832956
-
Kernel-based reinforcement learning
-
D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-3):161-178, 2002.
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 161-178
-
-
Ormoneit, D.1
Sen, S.2
-
6
-
-
1942514242
-
Batch value function approximation via support vectors
-
T. Dietterich and X. Wang. Batch value function approximation via support vectors. In NIPS, pages 1491-1498, 2001.
-
(2001)
NIPS
, pp. 1491-1498
-
-
Dietterich, T.1
Wang, X.2
-
8
-
-
35048819671
-
Least-squares methods in reinforcement learning for control
-
Michail G. Lagoudakis, Ronald Parr, and Michael L. Littman. Least-squares methods in reinforcement learning for control. In SETN, pages 249-260, 2002.
-
(2002)
SETN
, pp. 249-260
-
-
Lagoudakis, M.G.1
Parr, R.2
Littman, M.L.3
-
9
-
-
0038595396
-
Least-squares temporal difference learning
-
I. Bratko and S. Dzeroski, editors, Morgan Kaufmann, San Francisco, CA
-
Justin A. Boyan. Least-squares temporal difference learning. In I. Bratko and S. Dzeroski, editors, Machine Learning: Proceedings of the Sixteenth International Conference, volume 14, pages 49-56. Morgan Kaufmann, San Francisco, CA, 1999.
-
(1999)
Machine Learning: Proceedings of the Sixteenth International Conference
, vol.14
, pp. 49-56
-
-
Boyan, J.A.1
-
10
-
-
84898955987
-
Incorporating invariances in non-linear support vector machines
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
-
O. Chapelle and B. Schoelkopf. Incorporating invariances in non-linear support vector machines. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, pages 609-616. MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 609-616
-
-
Chapelle, O.1
Schoelkopf, B.2
-
11
-
-
33751577170
-
Tangent distance kernels for support vector machines
-
B. Haasdonk and D. Keysers. Tangent distance kernels for support vector machines. In Proceedings of the 16th ICPR, pages 864-868, 2002.
-
(2002)
Proceedings of the 16th ICPR
, pp. 864-868
-
-
Haasdonk, B.1
Keysers, D.2
-
13
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
AE Hoerl and RW Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, pages 55-68, 1970.
-
(1970)
Technometrics
, pp. 55-68
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
14
-
-
0003684449
-
-
Springer, New York
-
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements Of Statistical Learning Theory, Data Mining, Inference, and Prediction. Springer, New York, 2001.
-
(2001)
The Elements Of Statistical Learning Theory, Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
19
-
-
4544388567
-
Mixtures of gaussian processes
-
Volker Tresp. Mixtures of gaussian processes. In NIPS, volume 13, 2000.
-
(2000)
NIPS
, vol.13
-
-
Tresp, V.1
-
21
-
-
38049146711
-
Support vector machines on general confidence functions
-
Yuhong Guo and Dale Schuurmans. Support vector machines on general confidence functions. Department of Computing Science, University of Alberta, Edmonton, Canada, Technical Report, 2005.
-
(2005)
Department of Computing Science, University of Alberta, Edmonton, Canada, Technical Report
-
-
Guo, Y.1
Schuurmans, D.2
-
22
-
-
14344254996
-
Learning with non-positive kernels
-
C.S. Ong, X. Mary, S. Canu, and A.J. Smola. Learning with non-positive kernels. In Proceedings of the 21st International Conference on Machine Learning, pages 639-646, 2004.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 639-646
-
-
Ong, C.S.1
Mary, X.2
Canu, S.3
Smola, A.J.4
-
23
-
-
0003798637
-
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, Technical Report 99-03
-
O. L. Mangasarian and David R.. Musicant. Data discrimination via nonlinear generalized support vector machines. Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, Technical Report 99-03, 1999.
-
(1999)
-
-
Mangasarian, O.L.1
David, R.2
-
24
-
-
0141596576
-
Policy invariance under reward transformations: Theory and application to reward shaping
-
Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In Proc. 16th Intl. Conf. on Machine Learning, pages 278-287, 1999.
-
(1999)
Proc. 16th Intl. Conf. on Machine Learning
, pp. 278-287
-
-
Ng, A.Y.1
Harada, D.2
Russell, S.3
-
25
-
-
38349009432
-
Siemens AG, CTIC 4, Technical Report
-
Volker Tresp. The wet game of chicken. Siemens AG, CTIC 4, Technical Report, 1994.
-
(1994)
-
-
Tresp, V.1
-
26
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA, USA
-
John C. Piatt. Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods: support vector learning, pages 185-208. MIT Press, Cambridge, MA, USA, 1999.
-
(1999)
Advances in kernel methods: Support vector learning
, pp. 185-208
-
-
Piatt, J.C.1
|