메뉴 건너뛰기




Volumn 4507 LNCS, Issue , 2007, Pages 539-546

Neural gas clustering for dissimilarity data with continuous prototypes

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; EMBEDDED SYSTEMS; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION;

EID: 38049052786     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-73007-1_66     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 1
    • 0037928080 scopus 로고    scopus 로고
    • A taxonomy for spatiotemporal connectionist networks revisited: The unsupervised case
    • Barreto, G., Araujo, A., Kremer, S.: A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Computation 15, 1255-1320 (2003)
    • (2003) Neural Computation , vol.15 , pp. 1255-1320
    • Barreto, G.1    Araujo, A.2    Kremer, S.3
  • 4
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self-organizing map for proximity data
    • Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139-155 (1999)
    • (1999) Neural Computation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 7
    • 33749382046 scopus 로고    scopus 로고
    • Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised batch neural gas. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. Springer Lecture Notes in Artificial Intelligence, 4087, pp. 33-45. Springer, Heidelberg (2006)
    • Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised batch neural gas. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. Springer Lecture Notes in Artificial Intelligence, vol. 4087, pp. 33-45. Springer, Heidelberg (2006)
  • 9
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • Oja, E, Kaski, S, eds, Elsevier, Amsterdam
    • Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen maps, pp. 303-315. Elsevier, Amsterdam (1999)
    • (1999) Kohonen maps , pp. 303-315
    • Heskes, T.1
  • 10
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • LeCam, L.M, Neyman, J, eds, University of California Press
    • MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J. (eds.) Proc. 5th Berkeley Symposium on Math. Stat, and Prob., pp. 281-297. University of California Press (1967)
    • (1967) Proc. 5th Berkeley Symposium on Math. Stat, and Prob , pp. 281-297
    • MacQueen, J.B.1
  • 12
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945-952 (2002)
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 13
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4, 558-569 (1993)
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.G.2    Schulten, K.J.3
  • 14
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz, T., Schulten, K.J.: Topology representing networks. Neural Networks 7(3), 507-522 (1994)
    • (1994) Neural Networks , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.J.2
  • 15
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127-132 (1996)
    • (1996) Protein Engineering , vol.9 , pp. 127-132
    • Mevissen, H.1    Vingron, M.2
  • 16
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance based kernel functions for structural pattern classification
    • Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852-1863 (2006)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1852-1863
    • Neuhaus, M.1    Bunke, H.2
  • 17
    • 10044243405 scopus 로고    scopus 로고
    • Kernel neural gas algorithms with application to cluster analysis
    • 2004
    • Qin, A. K., Suganthan, P. N.: Kernel neural gas algorithms with application to cluster analysis. In: ICPR 2004, vol.4, pp.617-620 (2004)
    • (2004) ICPR , vol.4 , pp. 617-620
    • Qin, A.K.1    Suganthan, P.N.2
  • 18
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211-1230 (2004)
    • (2004) Neural Networks , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 19
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density network
    • Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 19(6), 780-784 (2006)
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 780-784
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.