-
1
-
-
38049024264
-
-
available at
-
Arthan, R.: Some group theory, available at http://www.lemma-one.com/ ProofPower/examples/wrk068.pdf
-
Some group theory
-
-
Arthan, R.1
-
2
-
-
37049032802
-
A Formally Verified Proof of the Prime Number Theorem
-
to appear
-
Avigad, J., Donnelly, K., Gray, D., Raff, P.: A Formally Verified Proof of the Prime Number Theorem. ACM Transactions on Computational Logic (to appear)
-
ACM Transactions on Computational Logic
-
-
Avigad, J.1
Donnelly, K.2
Gray, D.3
Raff, P.4
-
4
-
-
0037353096
-
Setoids in type theory
-
Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13(2), 261-293 (2003)
-
(2003)
Journal of Functional Programming
, vol.13
, Issue.2
, pp. 261-293
-
-
Barthe, G.1
Capretta, V.2
Pons, O.3
-
8
-
-
26844561948
-
A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals
-
Callaghan, P, Luo, Z, McKinna, J, Pollack, R, eds, TYPES 2000, Springer, Heidelberg
-
Geuvers, H., Wiedijk, F., Zwanenburg, J.: A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 96-111. Springer, Heidelberg (2002)
-
(2002)
LNCS
, vol.2277
, pp. 96-111
-
-
Geuvers, H.1
Wiedijk, F.2
Zwanenburg, J.3
-
12
-
-
38049020037
-
-
Gunter, E.: Doing Algebra in Simple Type Theory. Technical Report MS-CIS-89-38, University of Pennsylvania (1989)
-
Gunter, E.: Doing Algebra in Simple Type Theory. Technical Report MS-CIS-89-38, University of Pennsylvania (1989)
-
-
-
-
14
-
-
0003712416
-
-
The Coq development team:, LogiCal Project, Version 8.1
-
The Coq development team: The Coq proof assistant reference manual. LogiCal Project, Version 8.1 (2007)
-
(2007)
The Coq proof assistant reference manual
-
-
-
15
-
-
38049080848
-
-
Home
-
The Mizar Home Page, http://www.mizar.org/
-
The Mizar
-
-
-
16
-
-
38049043129
-
Définitions Inductives en Théorie des Types d'Ordre Supérieur. Habilitation à diriger les recherches
-
December
-
Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d'Ordre Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I (December 1996)
-
(1996)
Université Claude Bernard Lyon
, vol.1
-
-
Paulin-Mohring, C.1
-
17
-
-
20644449923
-
Isabelle
-
Paulson, L.C, ed, Springer, Heidelberg
-
Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
-
(1994)
LNCS
, vol.828
-
-
-
18
-
-
84859981079
-
Character Theory for the Odd Order Theorem
-
Cambridge University Press, Cambridge
-
Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 272. Cambridge University Press, Cambridge (2000)
-
(2000)
London Mathematical Society Lecture Note Series
, vol.272
-
-
Peterfalvi, T.1
-
19
-
-
38049060132
-
-
The Flyspeck Project
-
The Flyspeck Project, http://www.math.pitt.edu/~thales/flyspeck/
-
-
-
-
20
-
-
38049021820
-
Formalising Sylow's theorems in Coq
-
Technical Report 0327, INRIA
-
Rideau, L., Théry, L.: Formalising Sylow's theorems in Coq. Technical Report 0327, INRIA (2006)
-
(2006)
-
-
Rideau, L.1
Théry, L.2
-
22
-
-
0013204988
-
Ein beweis für die Existenz der Sylowgruppen
-
Wielandt, H.: Ein beweis für die Existenz der Sylowgruppen. Archiv der Mathematik 10, 401-402 (1959)
-
(1959)
Archiv der Mathematik
, vol.10
, pp. 401-402
-
-
Wielandt, H.1
-
23
-
-
0348054786
-
Computer Proofs in Group Theory
-
Yu, Y.: Computer Proofs in Group Theory. J. Autom. Reasoning 6(3), 251-286 (1990)
-
(1990)
J. Autom. Reasoning
, vol.6
, Issue.3
, pp. 251-286
-
-
Yu, Y.1
|