메뉴 건너뛰기




Volumn 9, Issue 1, 2007, Pages

A formally verified proof of the prime number theorem

Author keywords

Formal verification; Prime number theorem

Indexed keywords

COMPLEX ANALYSIS; FORMAL VERIFICATION; PRIME NUMBER THEOREM; SELBERG'S PROOF;

EID: 37049032802     PISSN: 15293785     EISSN: 1557945X     Source Type: Journal    
DOI: 10.1145/1297658.1297660     Document Type: Article
Times cited : (48)

References (16)
  • 2
    • 37049022078 scopus 로고    scopus 로고
    • Number theory and elementary arithmetic
    • AVIGAD, J. 2003. Number theory and elementary arithmetic. Philosophia Mathematica 11, 257-284.
    • (2003) Philosophia Mathematica , vol.11 , pp. 257-284
    • AVIGAD, J.1
  • 3
    • 33745670755 scopus 로고    scopus 로고
    • Notes on a formalization of the prime number theorem
    • Tech. rep. CMU-PHIL-163, Carnegie Mellon University
    • AVIGAD, J. 2004. Notes on a formalization of the prime number theorem. Tech. rep. CMU-PHIL-163, Carnegie Mellon University.
    • (2004)
    • AVIGAD, J.1
  • 4
    • 9444284435 scopus 로고    scopus 로고
    • Formalizing O notation in Isabelle/HOL
    • Proceedings of the 2nd International Joint Conference on Automated Reasoning IJCAR, D. Basin and M. Rusinowitch, Eds. Springer-Verlag
    • AVIGAD, J. AND DONNELLY, K. 2004. Formalizing O notation in Isabelle/HOL. In Proceedings of the 2nd International Joint Conference on Automated Reasoning (IJCAR), D. Basin and M. Rusinowitch, Eds. vol. 3097, Lecture Notes in Artificial Intelligence, Springer-Verlag, 357-371.
    • (2004) Lecture Notes in Artificial Intelligence , vol.3097 , pp. 357-371
    • AVIGAD, J.1    DONNELLY, K.2
  • 5
    • 84862233869 scopus 로고    scopus 로고
    • Logic. Meth. Comput. Sci. 2
    • 4:4
    • AVIGAD, J. AND FRIEDMAN, H. 2006. Combining decision procedures for the reals. Logic. Meth. Comput. Sci. 2,(4:4), 1-42.
    • (2006) , pp. 1-42
    • AVIGAD, J.1    FRIEDMAN, H.2
  • 6
    • 34249764827 scopus 로고
    • The prime number theorem and fragments of PA
    • CORNAROS, C. AND DIMITRACOPOULOS, C. 1994. The prime number theorem and fragments of PA. Arch. Math. Logic 33, 4, 265-281.
    • (1994) Arch. Math. Logic , vol.33 , Issue.4 , pp. 265-281
    • CORNAROS, C.1    DIMITRACOPOULOS, C.2
  • 9
    • 22944442211 scopus 로고    scopus 로고
    • The Prime Number Theorem
    • Cambridge University Press, Cambridge, UK
    • JAMESON, G. J. O. 2003. The Prime Number Theorem. London Mathematical Society Student Texts, vol. 53. Cambridge University Press, Cambridge, UK.
    • (2003) London Mathematical Society Student Texts , vol.53
    • JAMESON, G.J.O.1
  • 10
    • 26944493043 scopus 로고    scopus 로고
    • MCLAUGHLIN, S. AND HARRISON, J. 2005. A proof producing decision procedure for real arithmetic. In Proceedings of the Automated Deduction-CADE-20. 20th International Conference on Automated Deduction (CADE '20). Tallinn, Estonia, R. Nieuwenhuis, Ed. Lecture Notes in Artificial Intelligence, 3632, 295-314.
    • MCLAUGHLIN, S. AND HARRISON, J. 2005. A proof producing decision procedure for real arithmetic. In Proceedings of the Automated Deduction-CADE-20. 20th International Conference on Automated Deduction (CADE '20). Tallinn, Estonia, R. Nieuwenhuis, Ed. Lecture Notes in Artificial Intelligence, vol. 3632, 295-314.
  • 12
    • 0042714866 scopus 로고    scopus 로고
    • Isabelle/HOL
    • A proof assistant for higher-order logic, Springer-Verlag
    • NIPKOW, T., PAULSON, L. C., AND WENZEL, M. 2002. Isabelle/HOL. A proof assistant for higher-order logic. Lecture Notes in Computer Science, vol. 2283. Springer-Verlag.
    • (2002) Lecture Notes in Computer Science , vol.2283
    • NIPKOW, T.1    PAULSON, L.C.2    WENZEL, M.3
  • 13
    • 0004083608 scopus 로고
    • Introduction to the Theory of Numbers
    • John Wiley & Sons Inc
    • SHAPIRO, H. N. 1983. Introduction to the Theory of Numbers. Pure and Applied Mathematics. John Wiley & Sons Inc.
    • (1983) Pure and Applied Mathematics
    • SHAPIRO, H.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.