-
1
-
-
0002959919
-
Synchronization of two Lorenz systems using active control
-
Bai E.W., Loungren K.E. Synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals. 8(1):1997;51-58 Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals. 11(7):2000;1041-1044.
-
(1997)
Chaos, Solitons & Fractals
, vol.8
, Issue.1
, pp. 51-58
-
-
Bai, E.W.1
Loungren, K.E.2
-
2
-
-
0033888084
-
Sequential synchronization of two Lorenz systems using active control
-
Bai E.W., Loungren K.E. Synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals. 8(1):1997;51-58 Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals. 11(7):2000;1041-1044.
-
(2000)
Chaos, Solitons & Fractals
, vol.11
, Issue.7
, pp. 1041-1044
-
-
-
3
-
-
0031236791
-
Adaptive strategies for recognition, control and synchronization of chaos
-
Boccaletti S., Farini A., Arecchi F.T. Adaptive strategies for recognition, control and synchronization of chaos. Chaos, Solitons & Fractals. 8(9):1997;1431-1448.
-
(1997)
Chaos, Solitons & Fractals
, vol.8
, Issue.9
, pp. 1431-1448
-
-
Boccaletti, S.1
Farini, A.2
Arecchi, F.T.3
-
4
-
-
0036643128
-
Neural reconstruction of Lorenz attractors be an observable
-
Cannas B., Cinotti S. Neural reconstruction of Lorenz attractors be an observable. Chaos, Solitons & Fractals. 14(1):2002;81-86.
-
(2002)
Chaos, Solitons & Fractals
, vol.14
, Issue.1
, pp. 81-86
-
-
Cannas, B.1
Cinotti, S.2
-
5
-
-
0001566533
-
Predictability portraits for chaotic motions
-
Doerneret al. Predictability portraits for chaotic motions. Chaos, Solitons & Fractals. 1(6):1991;553-571 Stable manifolds and predictability of dynamical systems. Chaos, Solitons & Fractals. 10(11):1999;1759-1782.
-
(1991)
Chaos, Solitons & Fractals
, vol.1
, Issue.6
, pp. 553-571
-
-
Doerner1
-
6
-
-
0033229604
-
Stable manifolds and predictability of dynamical systems
-
Doerneret al. Predictability portraits for chaotic motions. Chaos, Solitons & Fractals. 1(6):1991;553-571 Stable manifolds and predictability of dynamical systems. Chaos, Solitons & Fractals. 10(11):1999;1759-1782.
-
(1999)
Chaos, Solitons & Fractals
, vol.10
, Issue.11
, pp. 1759-1782
-
-
-
7
-
-
0003372424
-
A strange attractor
-
Marsden J.E., Mccracken M., editors. Berlin-Heidelberg-New York: Springer-Verlag
-
Guckenheimer J. A strange attractor. Marsden J.E., Mccracken M. Bifurcation and its application. 1976;81 Springer-Verlag, Berlin-Heidelberg-New York.
-
(1976)
Bifurcation and its A1pplication
, pp. 81
-
-
Guckenheimer, J.1
-
8
-
-
0003285244
-
Nonlinear oscillations, dynamical systems and bifurcations of vector fields
-
Berlin-Heidelberg-New York: Springer-Verlag
-
Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields, App. Math. Sciences 42. Berlin-Heidelberg-New York: Springer-Verlag; 1983.
-
(1983)
App. Math. Sciences
, vol.42
-
-
Guckenheimer, J.1
Holmes, P.2
-
9
-
-
84984076276
-
Attractor location of the Lorenz system
-
Leonov G., Bunin A., Koksch N. Attractor location of the Lorenz system. ZAMM. 67:1987;649-656.
-
(1987)
ZAMM
, vol.67
, pp. 649-656
-
-
Leonov, G.1
Bunin, A.2
Koksch, N.3
-
10
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 20(1):1963;130-141.
-
(1963)
J. Atmos. Sci.
, vol.20
, Issue.1
, pp. 130-141
-
-
Lorenz, E.N.1
-
11
-
-
0036722172
-
Chaos synchronization between linearly chaotic systems
-
Lü J.H., Zhou T.S., Zhang S.C. Chaos synchronization between linearly chaotic systems. Chaos, Solitons & Fractals. 14(4):2002;529-541.
-
(2002)
Chaos, Solitons & Fractals
, vol.14
, Issue.4
, pp. 529-541
-
-
Lü, J.H.1
Zhou, T.S.2
Zhang, S.C.3
-
12
-
-
0028534251
-
Uintegrability and attractors
-
McCauley T.L. UIntegrability and attractors. Chaos, Solitons & Fractals. 4(11):1994;1969-1984.
-
(1994)
Chaos, Solitons & Fractals
, vol.4
, Issue.11
, pp. 1969-1984
-
-
McCauley, T.L.1
-
13
-
-
5744249296
-
Variational search of periodic motions in complex dynamical systems
-
Pasmanter R.A. Variational search of periodic motions in complex dynamical systems. Chaos, Solitons & Fractals. 6(1):1995;447-454.
-
(1995)
Chaos, Solitons & Fractals
, vol.6
, Issue.1
, pp. 447-454
-
-
Pasmanter, R.A.1
-
14
-
-
0035480495
-
Controlling the Lorenz system: Combining global and local scemes
-
Richter H. Controlling the Lorenz system: combining global and local scemes. Chaos, Solitons & Fractals. 12(13):2001;2375-2380.
-
(2001)
Chaos, Solitons & Fractals
, vol.12
, Issue.13
, pp. 2375-2380
-
-
Richter, H.1
-
15
-
-
0000086970
-
Homoclinic bifurcations to a transitive attractor of Lorenz type
-
Robibson C. Homoclinic bifurcations to a transitive attractor of Lorenz type. Nonlinearity. 2:1989;495-518.
-
(1989)
Nonlinearity
, vol.2
, pp. 495-518
-
-
Robibson, C.1
-
16
-
-
84971972587
-
Lorenz attractor through Sil'nikov-type bifurcation, part I
-
Rychlik M. Lorenz attractor through Sil'nikov-type bifurcation, part I. Ergodic Theor. Dynam. Syst. 10:1990;793-822.
-
(1990)
Ergodic Theor. Dynam. Syst.
, vol.10
, pp. 793-822
-
-
Rychlik, M.1
-
17
-
-
44949274924
-
Dynamics retrospective: Great problems, attempts that failed
-
Smale O.S. Dynamics retrospective: great problems, attempts that failed. Physica D. 51:1991;267-273.
-
(1991)
Physica D
, vol.51
, pp. 267-273
-
-
Smale, O.S.1
-
18
-
-
0004068972
-
-
Berlin-Heidelberg-New York: Springer-Verlag
-
Sparrow C. The Lorenz equation. 1982;Springer-Verlag, Berlin-Heidelberg-New York.
-
(1982)
The Lorenz Equation
-
-
Sparrow, C.1
-
19
-
-
0034738985
-
The Lorenz equations
-
Stewart I. The Lorenz equations. Nature. 406:2000;948-949.
-
(2000)
Nature
, vol.406
, pp. 948-949
-
-
Stewart, I.1
-
20
-
-
0028547411
-
Periodic and chaotic solutions for a nonlinear system arising from a nuclear spin generator
-
Sachdev P.L., Sarathy R. Periodic and chaotic solutions for a nonlinear system arising from a nuclear spin generator. Chaos, Solitons & Fractals. 4(11):1994;2015-2041.
-
(1994)
Chaos, Solitons & Fractals
, vol.4
, Issue.11
, pp. 2015-2041
-
-
Sachdev, P.L.1
Sarathy, R.2
-
21
-
-
0033563546
-
The Lorenz attractor exists
-
Tucker W. The Lorenz attractor exists. C.R. Acad. Sci. Paris Ser. I Math. 328(12):1999;1197-1202.
-
(1999)
C.R. Acad. Sci. Paris Ser. I Math.
, vol.328
, Issue.12
, pp. 1197-1202
-
-
Tucker, W.1
-
22
-
-
0017424051
-
The structure of Lorenz attractors
-
Bermard P., Ratiu T., editors. Berlin-Heidelberg-New York: Springer-Verlag
-
Williams R. The structure of Lorenz attractors. Bermard P., Ratiu T. Turbulence Seminar Berkeley 1996/97. 1997;94-112 Springer-Verlag, Berlin-Heidelberg-New York.
-
(1997)
Turbulence Seminar Berkeley 1996/97
, pp. 94-112
-
-
Williams, R.1
-
24
-
-
0036489554
-
Control of chaos in Lorenz systenz
-
Yang S.K., Chen C.L., Yau H.T. Control of chaos in Lorenz systenz. Chaos, Solitons & Fractals. 13(4):2002;767-780.
-
(2002)
Chaos, Solitons & Fractals
, vol.13
, Issue.4
, pp. 767-780
-
-
Yang, S.K.1
Chen, C.L.2
Yau, H.T.3
|