-
1
-
-
0035130088
-
-
For selected reviews on the use of 1,2-diacetals as chiral building blocks in organic synthesis, see: a
-
For selected reviews on the use of 1,2-diacetals as chiral building blocks in organic synthesis, see: (a) Ley, S. V.; Baeschlin, D. K.; Dixon, D. J.; Foster, A. C.; Ince, S. J.; Priepke, H. W. M.; Reynolds, D. J. Chem. Rev. 2001, 101, 53.
-
(2001)
Chem. Rev
, vol.101
, pp. 53
-
-
Ley, S.V.1
Baeschlin, D.K.2
Dixon, D.J.3
Foster, A.C.4
Ince, S.J.5
Priepke, H.W.M.6
Reynolds, D.J.7
-
2
-
-
27644525356
-
-
Schneider, M, Ed, Kluwer Academic Publishers: Netherlands
-
(b) Ley, S. V.; Baxendale, I. R.; Grice, P. NATO Science Series (II, Mathematics, Physics and Chemistry), Vol. 129; Schneider, M., Ed.; Kluwer Academic Publishers: Netherlands, 2003, 235.
-
(2003)
NATO Science Series (II, Mathematics, Physics and Chemistry)
, vol.129
, pp. 235
-
-
Ley, S.V.1
Baxendale, I.R.2
Grice, P.3
-
5
-
-
0001851070
-
-
Both enantiomers of glyceraldehyde acetonide are prone to racemization and rapid polymerization. See: a
-
Both enantiomers of glyceraldehyde acetonide are prone to racemization and rapid polymerization. See: (a) Hubschwerlen, J.; Specklin, L.; Higelin, J. Org. Synth 1995, 72, 1.
-
(1995)
Org. Synth
, vol.72
, pp. 1
-
-
Hubschwerlen, J.1
Specklin, L.2
Higelin, J.3
-
7
-
-
0028279659
-
-
Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Raimondi, L. Tetrahedron 1994, 50, 5821.
-
(1994)
Tetrahedron
, vol.50
, pp. 5821
-
-
Annunziata, R.1
Benaglia, M.2
Cinquini, M.3
Cozzi, F.4
Raimondi, L.5
-
8
-
-
0027761166
-
-
Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Ponzini, F. Bioorg. Med. Chem. Lett. 1993, 3, 2397.
-
(1993)
Bioorg. Med. Chem. Lett
, vol.3
, pp. 2397
-
-
Annunziata, R.1
Benaglia, M.2
Cinquini, M.3
Cozzi, F.4
Ponzini, F.5
-
10
-
-
1542385234
-
-
(b) Bose, A. K.; Hedge, V. R.; Wagle, D. R.; Bari, S. S.; Manhas, M. S. J. Chem. Soc., Chem. Commun. 1986, 161.
-
(1986)
J. Chem. Soc., Chem. Commun
, pp. 161
-
-
Bose, A.K.1
Hedge, V.R.2
Wagle, D.R.3
Bari, S.S.4
Manhas, M.S.5
-
12
-
-
0032476127
-
-
(d) Alcaide, B.; Polanco, C.; Sierra, M. A. J. Org. Chem. 1998, 63, 6786.
-
(1998)
J. Org. Chem
, vol.63
, pp. 6786
-
-
Alcaide, B.1
Polanco, C.2
Sierra, M.A.3
-
13
-
-
0033607690
-
-
(e) Grigg, R.; Thornton-Pett, M.; Xu, J.; Xu, L. H. Tetrahedron 1999, 55, 13841.
-
(1999)
Tetrahedron
, vol.55
, pp. 13841
-
-
Grigg, R.1
Thornton-Pett, M.2
Xu, J.3
Xu, L.H.4
-
14
-
-
0028266056
-
-
Jarayaman, M.; Deshmukh, A. R. A. S.; Bhawal, D. M. J. Org. Chem. 1994, 59, 932.
-
(1994)
J. Org. Chem
, vol.59
, pp. 932
-
-
Jarayaman, M.1
Deshmukh, A.R.A.S.2
Bhawal, D.M.3
-
15
-
-
0035874733
-
-
Palomo, C.; Oiarbide, M.; Landa, A.; Esnal, A.; Linden, A. J. Org. Chem. 2001, 66, 4180.
-
(2001)
J. Org. Chem
, vol.66
, pp. 4180
-
-
Palomo, C.1
Oiarbide, M.2
Landa, A.3
Esnal, A.4
Linden, A.5
-
16
-
-
37749013117
-
-
2O (1.6 mL) at 0°C was treated with the corresponding amine (0.681 mmol) and molecular sieves (Merck 4 Å). After the reaction was complete, the molecular sieves were filtered and the solvent was evaporated under vacuum to yield the corresponding imine 3. Compound 3a: R = Bn; reaction time: 25 min, 0°C, 98%. Compound 3b: R = (R)-CH(Me)(Ph); reaction time: 15 min, 0°C, 99%. Compound 3c: R = (S)-CH(Me)(Ph); reaction time: 15 min, 0°C, 81%.
-
2O (1.6 mL) at 0°C was treated with the corresponding amine (0.681 mmol) and molecular sieves (Merck 4 Å). After the reaction was complete, the molecular sieves were filtered and the solvent was evaporated under vacuum to yield the corresponding imine 3. Compound 3a: R = Bn; reaction time: 25 min, 0°C, 98%. Compound 3b: R = (R)-CH(Me)(Ph); reaction time: 15 min, 0°C, 99%. Compound 3c: R = (S)-CH(Me)(Ph); reaction time: 15 min, 0°C, 81%.
-
-
-
-
17
-
-
37749019409
-
-
General Procedure: A solution of the imine 3 (0.784 mmol) in CH2Cl2 (3.9 mL) was treated with Et3N (2.359 mmol) followed by the dropwise addition of a solution of the corresponding acyl chloride (1.196 mmol) in CH2Cl2 (2.6 mL) at 0°C under an argon atmosphere. After the reaction was completed, the reaction mixture was poured into H2O (6.6 mL, stirred for 15 min, and then extracted with CH2Cl2 (3 x 6.6 mL, The combined organic layers were washed with 5% NaHCO3 (2 x 2.6 mL, dried with MgSO4 and concentrated in vacuum affording a mixture of the corresponding β-lactams 4. The major diastereoisomer was obtained by direct crystallization from the reaction mixture and purified by recrystallization from hexane-EtOAc. The minor isomer was isolated from the mother liquors by column chromatography (silica gel, hexane-EtOAc, 6:1) and further HPLC separation
-
1 = PhO; reaction time: 15 min, r.t., 61%.
-
-
-
-
18
-
-
37749034417
-
-
Crystal structure analysis for 4a: mp 138-139°C. C 24H29NO6, Mr, 427.48 g mol -1. Crystallographic data (excluding structure factors) for compound 4a have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 661975. Crystal structure analysis for 4e: mp 136-137°C. C25H31NO6, M r, 441.51 g mol-1. Crystallographic data (excluding structure factors) for compound 4e have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 661977. Crystal structure analysis for 4g: mp 185-186°C. C25H 31NO6, Mr, 441.51 g mol-1. Crystallographic data (excluding structure factors) for compound 4g have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication
-
-1. Crystallographic data (excluding structure factors) for compound 4g have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 661976.
-
-
-
-
19
-
-
37749039208
-
-
A solution of the diastereomerically pure β-lactam 4e (0.165 mmol) in a mixture of TFA-H2O (9:1, 1.18 mL) was stirred at r.t. for 5 min. Then the reaction mixture was evaporated under vacuum and the resulting oil was purified by column chromatography (silica gel, hexane-EtOAc, 1:2, yielding 2a as a white solid (33 mg, 61, which was recrystallized from hexane-CH2Cl2; [α]D -119.0, α]578 -124.5, α]546 -142.8, α] 436 -257.3, α]546 -434.9 (c, 0.53, CH 2Cl2, 25°C, 1H NMR (400 MHz, CDCl 3, δ, 7.45 (d, J, 7.2 Hz, 2 H, Ph, 7.39 (t, J, 7.2 Hz, 2 H, Ph, 7.27-7.33 (m, 3 H, Ph, 7.12 (d, J, 8.0 Hz, 2 H, Ph, 7.04 (t, J, 7.2 Hz, 1 H, Ph, 5.24 (d, J3,4, 5.2 Hz, 1 H, H-3, 4.82 q, J1″,Me, 7.2 Hz, 1 H, H-1″, 3.9
-
3): δ = 166.1 (CO), 157.4 (Ph), 141.0 (Ph), 129.7, 128.9, 127.8, 127.0 (Ph), 122.7 (Ph), 115.9 (Ph), 79.5 (C-3), 71.2 (C-1′), 63.6 (C-2′), 59.5 (C-1″), 54.7 (C-4), 20.3 (Me).
-
-
-
-
20
-
-
37749022877
-
-
2b: [α]D -88.2, α]578 -92.8, α]546 -105.8, α]436 -189.8, α] 546 -322.9 (c, 0.42, CH2Cl2, 25°C, 1H NMR (400 MHz, CDCl3, δ, 7.26-7.38 (m, 7 H, Ph, 7.08 (d, J, 8.8 Hz, 2 H, Ph, 5.17 (d, J3,4, 5.2 Hz, 1 H, H-3, 4.81 (d, J1″a,1″b, 14.8 Hz, 1 H, H-1″a, 4.41 (d, J1″a,1″b, 14.8 Hz, 1 H, H-1″b, 4.09-4.13 (m, 1 H, H-1′, 3.84 (t, J4,1′, J4,3, 5.2 Hz, 1 H, H-4, 3.74 (dd, J2′a,2′b, 11.2 Hz, J 1′,2′a, 3.6 Hz, 1 H, H-2′a, 3.63 (dd, J2′a,2′b, 11.2 Hz, J 1′,2′b, 6.4 Hz, 1 H, H-2′b, 13C NMR 100 MHz
-
3): δ = 165.8 (CO), 155.6 (Ph), 134.9 (Ph), 129.6, 129.0, 128.3, 128.2 (Ph), 117.4 (Ph), 81.4 (C-3), 70.8 (C-1′), 63.9 (C-2′), 57.4 (C-4), 45.5 (C-1″).
-
-
-
|