-
3
-
-
0003875971
-
Anomalous diffusion from basics to applications
-
Springer, New York
-
Anomalous Diffusion From Basics to Applications, edited by A. Pekalski and K. Sznajd-Weron, Lecture Notes in Physics Vol. 519 (Springer, New York, 1998).
-
(1998)
Lecture Notes in Physics
, vol.519
-
-
Pekalski, A.1
Sznajd-Weron, K.2
-
4
-
-
33646987956
-
-
D.H. Zanette, e-print cond-mat/9905064
-
D.H. Zanette, e-print cond-mat/9905064.
-
-
-
-
13
-
-
0033704251
-
-
Hsen-Che Tseng, Peng-Ru Huang, Huang-Jung Chen, and Chin-Kun Hu, Physica A 281, 323 (2000).
-
(2000)
Physica A
, vol.281
, pp. 323
-
-
Tseng, H.-C.1
Huang, P.-R.2
Chen, H.-J.3
Hu, C.-K.4
-
14
-
-
0001143034
-
-
M. Pettini, A. Vulpiani, J.H. Misguich, M. DeLeener, J. Orban, and R. Balescu, Phys. Rev. A 38, 344 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 344
-
-
Pettini, M.1
Vulpiani, A.2
Misguich, J.H.3
Deleener, M.4
Orban, J.5
Balescu, R.6
-
16
-
-
0001306313
-
-
A.A. Chernikov, B.A. Petrovichev, A.V. Rogalsky, R.N. Sagdeev, and G.M. Zaslavsky, Phys. Lett. A 144, 127 (1990).
-
(1990)
Phys. Lett. A
, vol.144
, pp. 127
-
-
Chernikov, A.A.1
Petrovichev, B.A.2
Rogalsky, A.V.3
Sagdeev, R.N.4
Zaslavsky, G.M.5
-
19
-
-
0001605450
-
-
S. Benkadda, S. Kassibrakis, R.B. White, and G.M. Zaslavsky, Phys. Rev. E 55, 4909 (1997).
-
(1997)
Phys. Rev. E
, vol.55
, pp. 4909
-
-
Benkadda, S.1
Kassibrakis, S.2
White, R.B.3
Zaslavsky, G.M.4
-
22
-
-
4243513376
-
-
M.N. Popescu, Y. Braiman, F. Family, and H.G.E. Hentschel, Phys. Rev. E 58, R4057 (1998).
-
(1998)
Phys. Rev. E
, vol.58
-
-
Popescu, M.N.1
Braiman, Y.2
Family, F.3
Hentschel, H.G.E.4
-
26
-
-
33646982515
-
-
note
-
The numerical scheme was also tested against the analytical solution wherever possible. For ω = 0, γ = 0, the absolute error was less than 8.0E-6 over 1000 drive cycles when a drive cycle was divided into 100 time steps. For γ= 0 and ω = 0.1, the absolute error was less than 0.013 for 5000 time steps per drive cycle and less than 0.15 for 100 time steps per drive cycle. The error is found to be maximum near the zeros of the solution and least near their extrema. In all cases, the numerically evaluated solution "shadows" the analytical solution.
-
-
-
-
27
-
-
24544478068
-
-
C. Grebogi, E. Ott, F. Romeiras, and J.A. Yorke, Phys. Rev. A 36, 5365 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 5365
-
-
Grebogi, C.1
Ott, E.2
Romeiras, F.3
Yorke, J.A.4
-
28
-
-
33646974040
-
-
note
-
The mean time between switching being quite large for the crisis induced intermittency, close to the bifurcation point longer orbit lengths are required to find normal diffusion. The small difference in the bifurcation point between what we have reported and that of Ref. [27] may be because of the same reason. This will result in a small change in the exponent.
-
-
-
-
31
-
-
0034156561
-
-
H.L.D. De, S. Cavalcante, and J.R. Rios Leite, Dyn. Stab. Syst. 15, 35 (2000); Physica A 283, 125 (2000).
-
(2000)
Dyn. Stab. Syst.
, vol.15
, pp. 35
-
-
De, H.L.D.1
Cavalcante, S.2
Leite, J.R.R.3
-
32
-
-
0034156561
-
-
H.L.D. De, S. Cavalcante, and J.R. Rios Leite, Dyn. Stab. Syst. 15, 35 (2000); Physica A 283, 125 (2000).
-
(2000)
Physica A
, vol.283
, pp. 125
-
-
|