메뉴 건너뛰기




Volumn 15, Issue 1, 2000, Pages 35-41

Bifurcations and averages in the logistic map

Author keywords

[No Author keywords available]

Indexed keywords

CHAOS THEORY; ITERATIVE METHODS; TIME SERIES ANALYSIS;

EID: 0034156561     PISSN: 14689367     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (8)
  • 2
    • 33646141395 scopus 로고    scopus 로고
    • Cavalcante, H. L. D. de S., and Rios Leite, J. R., 1999, to be published
    • Cavalcante, H. L. D. de S., and Rios Leite, J. R., 1999, to be published.
  • 3
    • 0007294456 scopus 로고
    • Experimental verification of a universal scaling law for the Lyapunov exponent of a chaotic system
    • Claiborne Johnston, J., and Hilborn, R. C., 1988, Experimental verification of a universal scaling law for the Lyapunov exponent of a chaotic system. Physical Review. A, 37: 2680-2682.
    • (1988) Physical Review. A , vol.37 , pp. 2680-2682
    • Claiborne Johnston, J.1    Hilborn, R.C.2
  • 5
    • 0000132282 scopus 로고    scopus 로고
    • Scaling of the duration of chaotic transients in windows of attracting periodicity
    • Jacobs, J., Ott, E., and Hunt, B. R., 1997, Scaling of the duration of chaotic transients in windows of attracting periodicity. Physical Review E, 56: 6508-6515.
    • (1997) Physical Review E , vol.56 , pp. 6508-6515
    • Jacobs, J.1    Ott, E.2    Hunt, B.R.3
  • 7
    • 0003582543 scopus 로고
    • Cambridge: Cambridge University Press
    • Ott, E., 1993, Chaos in Dynamical Systems (Cambridge: Cambridge University Press).
    • (1993) Chaos in Dynamical Systems
    • Ott, E.1
  • 8
    • 0003153450 scopus 로고    scopus 로고
    • How long do numerical chaotic solutions remain valid?
    • Sauer, T., Grebogi, C., and York, J. A., 1997, How long do numerical chaotic solutions remain valid? Physical Review Letters, 79: 59-62.
    • (1997) Physical Review Letters , vol.79 , pp. 59-62
    • Sauer, T.1    Grebogi, C.2    York, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.