-
1
-
-
4243126998
-
-
K. Liu, J. D. Cruzan, R. J. Saykally, Science 1996, 271, 929.
-
(1996)
Science
, vol.271
, pp. 929
-
-
Liu, K.1
Cruzan, J.D.2
Saykally, R.J.3
-
2
-
-
2342448436
-
-
Y. M. Rhee, E. J. Sorin, G. Jayachandran, E. Lindahl, V. S. Pande, Proc. Natl. Acad. Sci. USA 2004, 101, 6456.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 6456
-
-
Rhee, Y.M.1
Sorin, E.J.2
Jayachandran, G.3
Lindahl, E.4
Pande, V.S.5
-
3
-
-
33847738211
-
-
a) J. Friedman, Y. T. Meharenna, A. Wilks, T. L. Poulos, J. Biol. Chem. 2006, 282, 1066;
-
(2006)
J. Biol. Chem
, vol.282
, pp. 1066
-
-
Friedman, J.1
Meharenna, Y.T.2
Wilks, A.3
Poulos, T.L.4
-
5
-
-
0034636867
-
-
C. E. MacBeth, A. P. Golombek, V. G. Young, Jr., C. Yang, K. Kuczera, M. P. Hendrich, A. S. Borovik, Science 2000, 289, 938.
-
(2000)
Science
, vol.289
, pp. 938
-
-
MacBeth, C.E.1
Golombek, A.P.2
Young Jr., V.G.3
Yang, C.4
Kuczera, K.5
Hendrich, M.P.6
Borovik, A.S.7
-
6
-
-
26844432971
-
-
F. Hof, L. Trembleau, E. C. Ullrich, J. Rebek, Jr., Angew. Chem. 2003, 115, 3258;
-
(2003)
Angew. Chem
, vol.115
, pp. 3258
-
-
Hof, F.1
Trembleau, L.2
Ullrich, E.C.3
Rebek Jr., J.4
-
7
-
-
0041702207
-
-
Angew. Chem. Int. Ed. 2003, 42, 3150.
-
(2003)
Chem. Int. Ed
, vol.42
, pp. 3150
-
-
Angew1
-
8
-
-
1542317795
-
-
a) M. Yamanaka, A. Shivanyuk, J. Rebek, Jr., J. Am. Chem. Soc. 2004, 126, 2939;
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 2939
-
-
Yamanaka, M.1
Shivanyuk, A.2
Rebek Jr., J.3
-
12
-
-
33244474297
-
-
Royal Society of Chemistry, Cambridge
-
J. L. Sessler, P. A. Gale, W.-S. Cho, Anion Receptor Chemistry, Royal Society of Chemistry, Cambridge, 2006.
-
(2006)
Anion Receptor Chemistry
-
-
Sessler, J.L.1
Gale, P.A.2
Cho, W.-S.3
-
13
-
-
33750522306
-
-
An understanding of the coordination preferences of anions is emerging, but the directionality is still less defined than for their cationic counterparts. For a detailed discussion, see, S. O. Kang, M. A. Hossain, K. Bowman-James, Coord. Chem. Rev. 2006, 250, 3038
-
An understanding of the coordination preferences of anions is emerging, but the directionality is still less defined than for their cationic counterparts. For a detailed discussion, see : S. O. Kang, M. A. Hossain, K. Bowman-James, Coord. Chem. Rev. 2006, 250, 3038.
-
-
-
-
14
-
-
0038911680
-
-
J. Sanchez-Quesada, C. Seel, P. Prados, J. de Mendoza, I. Dalcol, E. Giralt, J. Am. Chem. Soc. 1996, 118, 277.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 277
-
-
Sanchez-Quesada, J.1
Seel, C.2
Prados, P.3
de Mendoza, J.4
Dalcol, I.5
Giralt, E.6
-
16
-
-
0037418990
-
-
Angew. Chem. Int. Ed. 2003, 42, 1460.
-
(2003)
Chem. Int. Ed
, vol.42
, pp. 1460
-
-
Angew1
-
17
-
-
0037174367
-
-
a) P. A. Gale, K. Navakhun, S. Camiolo, M. E. Light, M. B. Hursthouse, J. Am. Chem. Soc. 2002, 124, 11228;
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 11228
-
-
Gale, P.A.1
Navakhun, K.2
Camiolo, S.3
Light, M.E.4
Hursthouse, M.B.5
-
18
-
-
37549054786
-
-
b) K. A. Nielsen, W.-S. Cho, G. H. Sarova, B. M. Petersen, A. D. Bond, J. Becher, F. Jensen, D. M. Guldi, J. L. Sessler, J. O. Jeppesen, Angew. Chem. 2006, 118, 7002;
-
(2006)
Angew. Chem
, vol.118
, pp. 7002
-
-
Nielsen, K.A.1
Cho, W.-S.2
Sarova, G.H.3
Petersen, B.M.4
Bond, A.D.5
Becher, J.6
Jensen, F.7
Guldi, D.M.8
Sessler, J.L.9
Jeppesen, J.O.10
-
19
-
-
33750449309
-
-
Angew. Chem. Int. Ed. 2006, 45, 6848;
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 6848
-
-
Angew1
-
20
-
-
0037423973
-
-
c) S. J. Coles, J. G. Frey, P. A. Gale, M. B. Hursthouse, M. E. Light, K. Navakhun, G. L. Thomas, Chem. Commun. 2003, 568.
-
(2003)
Chem. Commun
, pp. 568
-
-
Coles, S.J.1
Frey, J.G.2
Gale, P.A.3
Hursthouse, M.B.4
Light, M.E.5
Navakhun, K.6
Thomas, G.L.7
-
21
-
-
0034697020
-
-
For an example of water and halides occupying the same binding sites in a protein, see
-
For an example of water and halides occupying the same binding sites in a protein, see: T. J. Fiedler, C. A. Davey, R. E. Fenna, J. Biol. Chem. 2000, 275, 11964.
-
(2000)
J. Biol. Chem
, vol.275
, pp. 11964
-
-
Fiedler, T.J.1
Davey, C.A.2
Fenna, R.E.3
-
22
-
-
37549036811
-
-
Ph.D. Thesis, University of Oregon
-
a) C. A. Johnson II, Ph.D. Thesis, University of Oregon, 2007;
-
(2007)
-
-
Johnson II, C.A.1
-
23
-
-
37549026924
-
-
unpublished result s
-
b) C. A. Johnson II, O. B. Berryman, M. J. Hynes, L. N. Zakharov, D. W. Johnson, M. M. Haley, unpublished result s.
-
-
-
Johnson II, C.A.1
Berryman, O.B.2
Hynes, M.J.3
Zakharov, L.N.4
Johnson, D.W.5
Haley, M.M.6
-
25
-
-
37549013832
-
-
Crystal data for (1·H2O)2: (C 43H45N3O5S2) 2, Mr, 1495.88, 0.31 x 0.18 x 0.15 mm, triclinic, space group P1, a, 10.0377(17, b, 12.755(2, c, 17.357(3) Å, α, 111.270(3, β, 96.113(3, γ, 102.966(3)°, V, 1974.4(6) Å3, Z, 1 (one dimer per unit cell, ρcalcd, 1.258 g mL-1, μ, 0.183 mm-1, 2θmax, 54.00°, T, 173(2) K, R1, 0.0470 for 6966 reflections (662 parameters) with I > 2σI, and R1, 0.0580, wR2, 0.1222, and GOF, 1.028 for all 8480 data, max/min residual electron density +0.502/-0.682 e Å-3
-
-3.
-
-
-
-
26
-
-
37549058110
-
-
Crystal data for (2·H2O)2: (C 41H39N5O9S2) 2, Mr, 1619.78, 0.30 x 0.20 x 0.01 mm, triclinic, space group P1, a, 10.1068(15, b, 12.5999(19, c, 17.186(3) Å, α, 110.709(3, β, 97.006(3, γ, 100.306(3)°, V, 1972.9(5) Å3, Z, 1, ρcalcd, 1.363 g mL-1, μ, 0.198 mm-1, 2θmax, 54.00°, T, 173(2) K, R1, 0.0642 for 4980 reflections (674 parameters) with I > 2σI, and R1, 0.1233, wR2, 0.1462, and GOF, 1.034 for all 8413 data, max/min residual electron density +0.312/-0.432 e Å-3
-
-3.
-
-
-
-
27
-
-
34547925743
-
-
The staggered conformation for sulfonamides refers to the conformation in which the lone pair of the nitrogen atom bisects the O-S-O angle (the lone pair is antiperiplanar to the S-C bond), see: A. K. H. Hirsch, S. Lauw, P. Gersbach, W. B. Schweizer, F. Rohdich, W. Eisenreich, A. Bacher, F. Diederich, ChemMedChem 2007, 2, 806.
-
The "staggered" conformation for sulfonamides refers to the conformation in which the lone pair of the nitrogen atom bisects the O-S-O angle (the lone pair is antiperiplanar to the S-C bond), see: A. K. H. Hirsch, S. Lauw, P. Gersbach, W. B. Schweizer, F. Rohdich, W. Eisenreich, A. Bacher, F. Diederich, ChemMedChem 2007, 2, 806.
-
-
-
-
29
-
-
37549051422
-
-
Other potential guest molecules that did not cocrystallize with sulfonamide receptors include methanol, ethanol, isopropyl alcohol, acetone, acetonitrile, dimethylsulfoxide, tetrahydrofuran, tetra-n-butylammonium halides, and HSO4
-
-.
-
-
-
-
30
-
-
37549039921
-
-
Crystal data for (H1+·Br, 2: (C43H44BrN3O4S 2)2, Mr, 1621.68, 0.21 x 0.07 x 0.02 mm, triclinic, space group P1, a, 9.632(16, b, 13.33(2, c, 17.47(3) Å, α, 108.39(4, β, 94.56(5, γ, 106.51(4)°, V, 2005(6) Å3, Z, 1, ρcalcd, 1.343 g mL-1, μ, 1.175 mm-1, 2θmax, 54.00°, T, 173(2) K, R1, 0.0598 for 5748 reflections (599 parameters) with I > 2σI, and R1, 0.1021, wR2, 0.1527, and GOF, 1.035 for all 8622 data, max/min residual electron density +0.680/-0.371 e Å-3
-
-3.
-
-
-
-
31
-
-
37549023921
-
-
Crystal data for (H2+·Cl, 2: (C41H38ClN5O8S 2)2, Mr, 1656.66, 0.30 x 0.25 x 0.02 mm, triclinic, space group P1, a, 9.8907(13, b, 12.9533(17, c, 17.012(2) Å, α, 107.831(2, β, 95.845(2, γ, 103.618(2)°, V, 1980.5(4) Å3, Z, 1, ρcalcd, 1.389 g mL-1, μ, 0.262 mm-1, 2θmax, 54.00°, T, 173(2) K, R1, 0.0572 for 6572 reflections (594 parameters) with I > 2σI, and R1, 0.0744, wR2, 0.1594, and GOF, 1.045 for all 8472 data, max/min residual electron density, 0.564/-0.290 e Å3
-
3.
-
-
-
-
32
-
-
37549011104
-
-
The UV/Vis spectrum of H1+·BF4, is consistent with the yellow color of the protonated receptor in organic solutions. Upon protonation, receptor 1 exhibits a new absorption peak with λmax, 400 nm. The unique absorption characteristics of receptor H1+ were used to study the host-guest interactions of this molecule in solution. Specifically, tetra-n-butylammonium halides were titrated into CH2Cl 2 solutions of H1+·BF4, while maintaining constant receptor concentrations. Evident changes in the UV/Vis spectra were observed upon addition of halide anions. In all cases, the absorption bands at 240, 290, and 330 nm were shown to increase in intensity throughout the titration, while the intensity of the absorption band at 400 nm decreased, exemplifying isosbestic behavior. Unfortunately, at low concentrations equilibrium conditi
-
- with halides exhibit a steep linear increase up to one equivalent of halide, with chloride affecting the steepest binding isotherm and iodide the shallowest. The second portion of the equilibrium exhibits a much smaller influence on the overall chemical shift of the complex. The second portion of the binding isotherm has made it difficult to determine association constants. Host-guest equilibria will be reported in due course.
-
-
-
-
33
-
-
37549045351
-
-
Subsequent iterations of this experiment resulted in the formation of precipitate, suggesting that the first trial was supersaturated. The relatively low solubility of this complex in organic solvents has hindered further determination of association constants
-
Subsequent iterations of this experiment resulted in the formation of precipitate, suggesting that the first trial was supersaturated. The relatively low solubility of this complex in organic solvents has hindered further determination of association constants.
-
-
-
-
34
-
-
37549008839
-
-
Crystal data for (H1+Cl, 1·H2O, C43H43N 3O4S2)2·H 2O·HCl, Mr, 1514.32,0.20 x 0.08 x 0.02 mm, triclinic, space group P1, a, 9.9702(13, b, 12.8868(17, c, 17.363(2) Å, a, 111.314(2, β, 95.475(3, γ, 103.737(2)°, V, 1977.7(4) Å3, Z, 1, ρcalcd, 1.271 g mL-1, μ, 0.215 mm -1, 2θmax, 54.00°, T, 173(2) K, R1, 0.0671 for 5583 reflections (559 parameters) with I > 2σI, and R1, 0.1074, wR2, 0.1673, and GOF, 1.027 for all 8485 data, max/min residual electron density +0.842/-0.723 e Å-3
-
-3.
-
-
-
|