메뉴 건너뛰기




Volumn 22, Issue 1, 2008, Pages 67-82

Deterministic insight into ANN model performance for storm runoff simulation

Author keywords

ANN model; Deterministic insight; Rainfall runoff simulation; Training data set

Indexed keywords

COMPUTER SIMULATION; DISCHARGE (FLUID MECHANICS); NEURAL NETWORKS; RAIN; STORMS; WATERSHEDS;

EID: 37549051650     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-006-9144-x     Document Type: Article
Times cited : (28)

References (39)
  • 1
    • 0001332236 scopus 로고
    • The nonlinear prediction problem in the study of runoff cycle
    • Amorocho J (1967) The nonlinear prediction problem in the study of runoff cycle. Water Resour Res 3(3):861-880
    • (1967) Water Resour Res , vol.3 , Issue.3 , pp. 861-880
    • Amorocho, J.1
  • 2
    • 0033827239 scopus 로고    scopus 로고
    • Comparison of ANNs and empirical approaches for predicting watershed runoff
    • Anmala J, Zhang B, Govindaraju RS (2000) Comparison of ANNs and empirical approaches for predicting watershed runoff. J Water Resour Plan Manage, ASCE 126(3):156-166
    • (2000) J Water Resour Plan Manage, ASCE , vol.126 , Issue.3 , pp. 156-166
    • Anmala, J.1    Zhang, B.2    Govindaraju, R.S.3
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J Hydrol Eng ASCE 5(2):115-123
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee (2000b) Artificial neural networks in hydrology. II: Hydrologic applications. J Hydrol Eng ASCE 5(2):124-137
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 0002918396 scopus 로고
    • Neural networks primer. Part I
    • Caudill M (1987) Neural networks primer. Part I. AI expert:46-52
    • (1987) AI Expert , pp. 46-52
    • Caudill, M.1
  • 6
    • 0001372809 scopus 로고
    • Nonlinear time-varying model of rainfall-runoff relation
    • Chiu CL, Huang JT (1970) Nonlinear time-varying model of rainfall-runoff relation. Water Resour Res 6(1):1277-1286
    • (1970) Water Resour Res , vol.6 , Issue.1 , pp. 1277-1286
    • Chiu, C.L.1    Huang, J.T.2
  • 9
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci J 43(1):47-66
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 10
    • 0016070659 scopus 로고
    • Variable unit hydrograph
    • Ding JY (1974) Variable unit hydrograph. J Hydrol 22:53-69
    • (1974) J Hydrol , vol.22 , pp. 53-69
    • Ding, J.Y.1
  • 11
    • 0000974391 scopus 로고
    • A general theory of the unit hydrograph
    • Dooge JCI (1959) A general theory of the unit hydrograph. J Geophys Res 64(1):241-256
    • (1959) J Geophys Res , vol.64 , Issue.1 , pp. 241-256
    • Dooge, J.C.I.1
  • 12
    • 0022511581 scopus 로고
    • Roughness coefficients for routing surface runoff
    • Engman ET (1986) Roughness coefficients for routing surface runoff. J Irrig Drain Eng ASCE 112(1):39-53
    • (1986) J Irrig Drain Eng ASCE , vol.112 , Issue.1 , pp. 39-53
    • Engman, E.T.1
  • 13
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137:1-31
    • (1992) J Hydrol , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 15
    • 0020118274 scopus 로고
    • Neural networks and physical system with emergent collective computational abilities
    • Hopfield JJ (1982) Neural networks and physical system with emergent collective computational abilities. Proc Natl Acad Sci 79:2554-2558
    • (1982) Proc Natl Acad Sci , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 16
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10):2517-2530
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 18
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques - Deterministic, statistical, and artificial neural networks
    • Jain A, Indurthy SKVP (2003) Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical, and artificial neural networks. J Hydrol Eng ASCE 8(2):93-98
    • (2003) J Hydrol Eng ASCE , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 19
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • Kumar DN, Raju KS, Sathish T (2004) River flow forecasting using recurrent neural networks. Water Resour Manag 18:143-161
    • (2004) Water Resour Manag , vol.18 , pp. 143-161
    • Kumar, D.N.1    Raju, K.S.2    Sathish, T.3
  • 20
    • 0032054843 scopus 로고    scopus 로고
    • Generating design hydrographs by DEM assisted geomorphic runoff simulation: A case study
    • Lee KT (1998) Generating design hydrographs by DEM assisted geomorphic runoff simulation: A case study. J Am Water Resour Assoc 34(2):375-384
    • (1998) J Am Water Resour Assoc , vol.34 , Issue.2 , pp. 375-384
    • Lee, K.T.1
  • 21
    • 0030949101 scopus 로고    scopus 로고
    • Geomorphology and kinematic-wave based hydrograph deviation
    • Lee KT, Yen BC (1997) Geomorphology and kinematic-wave based hydrograph deviation. J Hydraul Eng ASCE 123(1):73-80
    • (1997) J Hydraul Eng ASCE , vol.123 , Issue.1 , pp. 73-80
    • Lee, K.T.1    Yen, B.C.2
  • 22
    • 0035368180 scopus 로고    scopus 로고
    • Reservoir attenuation of floods from ungauged basins
    • Lee KT, Chang C-H, Yang M-S, Yu W-S (2001) Reservoir attenuation of floods from ungauged basins. Hydrol Sci J 46(3):349-362
    • (2001) Hydrol Sci J , vol.46 , Issue.3 , pp. 349-362
    • Lee, K.T.1    Chang, C.-H.2    Yang, M.-S.3    Yu, W.-S.4
  • 23
    • 30944463590 scopus 로고    scopus 로고
    • A windows-based inquiry system for design discharge based on geomorphic runoff modeling
    • Lee KT, Chung Y-R, Lau C-C, Meng C-C, Chiang S (2006a) A windows-based inquiry system for design discharge based on geomorphic runoff modeling. Comput Geosci 32(2):203-211
    • (2006) Comput Geosci , vol.32 , Issue.2 , pp. 203-211
    • Lee, K.T.1    Chung, Y.-R.2    Lau, C.-C.3    Meng, C.-C.4    Chiang, S.5
  • 24
    • 33144467106 scopus 로고    scopus 로고
    • Bridge blockage and overbank flow simulations using HEC-RAS in the Keelung River during the 2001 Nari typhoon
    • Lee KT, Ho Y-H, Chyan Y-J (2006b) Bridge blockage and overbank flow simulations using HEC-RAS in the Keelung River during the 2001 Nari typhoon. J. Hydraul Eng, ASCE 132(3):319-323
    • (2006) J. Hydraul Eng, ASCE , vol.132 , Issue.3 , pp. 319-323
    • Lee, K.T.1    Ho, Y.-H.2    Chyan, Y.-J.3
  • 25
    • 9444255074 scopus 로고    scopus 로고
    • Joint application of artificial neural networks and evolutionary algorithms to watershed management
    • Muleta MK, Nicklow JW (2004) Joint application of artificial neural networks and evolutionary algorithms to watershed management. Water Resour Manag 18:459-482
    • (2004) Water Resour Manag , vol.18 , pp. 459-482
    • Muleta, M.K.1    Nicklow, J.W.2
  • 26
    • 0002950175 scopus 로고
    • Predicting storm runoff on small experimental watersheds
    • Minshall NE (1960) Predicting storm runoff on small experimental watersheds. J Hydraul Eng ASCE HY8:17-38
    • (1960) J Hydraul Eng ASCE , vol.HY8 , pp. 17-38
    • Minshall, N.E.1
  • 27
    • 0000175259 scopus 로고
    • The form of instantaneous unit hydrograph
    • Nash JE (1957) The form of instantaneous unit hydrograph. Int'l Assoc Sci Hydrol, Pub 45(3):114-121
    • (1957) Int'l Assoc Sci Hydrol, Pub , vol.45 , Issue.3 , pp. 114-121
    • Nash, J.E.1
  • 28
    • 0345761725 scopus 로고    scopus 로고
    • Optimal groundwater management in deltaic regions using simulated annealing and neural networks
    • Rao SVN, Thandaveswara BS, Bhallamudi M, Srinivasulu V (2003) Optimal groundwater management in deltaic regions using simulated annealing and neural networks. Water Resour Manag 17:409-428
    • (2003) Water Resour Manag , vol.17 , pp. 409-428
    • Rao, S.V.N.1    Thandaveswara, B.S.2    Bhallamudi, M.3    Srinivasulu, V.4
  • 29
    • 0018677794 scopus 로고
    • The geomorphologic structure of hydrologic response
    • Rodriguez-Iturbe I, Valdes JB (1979) The geomorphologic structure of hydrologic response. Water Resour Res 15(6):1409-1420
    • (1979) Water Resour Res , vol.15 , Issue.6 , pp. 1409-1420
    • Rodriguez-Iturbe, I.1    Valdes, J.B.2
  • 31
    • 0001243354 scopus 로고
    • Streamflow from rainfall by unit-graph method
    • Sherman LK (1932) Streamflow from rainfall by unit-graph method. Eng News-Rec 108(7):501-505
    • (1932) Eng News-Rec , vol.108 , Issue.7 , pp. 501-505
    • Sherman, L.K.1
  • 33
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci J 47(6):879-892
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 34
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng ASCE 5(2):180-189
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 35
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng ASCE 4(3):232-239
    • (1999) J Hydrol Eng ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 36
    • 0027008856 scopus 로고
    • Hydraulic roughness coefficients for native rangelands
    • Weltz MA, Arslan AB, Lane LJ (1992) Hydraulic roughness coefficients for native rangelands. J Irrig Drain Eng ASCE 118(5):776-790
    • (1992) J Irrig Drain Eng ASCE , vol.118 , Issue.5 , pp. 776-790
    • Weltz, M.A.1    Arslan, A.B.2    Lane, L.J.3
  • 37
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • Yapo PO, Gupta VK, Sorooshian S (1996) Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J Hydrol 181:23-48
    • (1996) J Hydrol , vol.181 , pp. 23-48
    • Yapo, P.O.1    Gupta, V.K.2    Sorooshian, S.3
  • 38
    • 0003129758 scopus 로고    scopus 로고
    • Unit hydrograph derivation for ungaged watersheds by stream order laws
    • Yen BC, Lee KT (1997) Unit hydrograph derivation for ungaged watersheds by stream order laws. J Hydrol Eng ASCE 2(1):1-9
    • (1997) J Hydrol Eng ASCE , vol.2 , Issue.1 , pp. 1-9
    • Yen, B.C.1    Lee, K.T.2
  • 39
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214:32-48
    • (1999) J Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.