메뉴 건너뛰기




Volumn 20, Issue 4, 2006, Pages 575-593

Bayesian and non-Bayesian analysis of gamma stochastic frontier models by Markov chain Monte Carlo methods

Author keywords

Acceptance rejection Metropolis Hastings algorithm; Auxiliary variable method; Marginal likelihood; Markov chain Monte Carlo; Stochastic approximation; Stochastic frontier model

Indexed keywords


EID: 37449025952     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/BF02741316     Document Type: Article
Times cited : (5)

References (42)
  • 1
    • 49449120922 scopus 로고
    • Formulation and estimation of stochastic frontier production function models
    • Aigner, D., Lovell, C. A. K. & Schmidt, P. (1977). "Formulation and estimation of stochastic frontier production function models, " Journal of Econometrics, 6, 21-37.
    • (1977) Journal of Econometrics , vol.6 , pp. 21-37
    • Aigner, D.1    Lovell, C.A.K.2    Schmidt, P.3
  • 2
    • 38249036458 scopus 로고
    • A tractable likelihood function for the normal-gamma stochastic frontier model
    • Beckers, D. & Hammond, C. (1987). "A tractable likelihood function for the normal-gamma stochastic frontier model, " Economics Letters, 24, 33-38.
    • (1987) Economics Letters , vol.24 , pp. 33-38
    • Beckers, D.1    Hammond, C.2
  • 4
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth, J. G. & Hobert, J. P. (1999). "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm, " Journal of the Royal Statistics Society, B61,265-285.
    • (1999) Journal of the Royal Statistics Society , vol.B61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 8
    • 33847220057 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods: Computation and inference
    • in, (eds J. Heckman and E. Learner), North Holland, Amsterdam
    • Chib, S. (2001). "Markov chain Monte Carlo methods: Computation and inference, " in Handbook of Econometrics, Vol. 5 (eds J. Heckman and E. Learner), North Holland, Amsterdam, 3569-3649.
    • (2001) Handbook of Econometrics , vol.5 , pp. 3569-3649
    • Chib, S.1
  • 9
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib, S. & Greenberg, E. (1995). "Understanding the Metropolis-Hastings algorithm, " American Statistician, 49, 327-335.
    • (1995) American Statistician , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 12
    • 0001635603 scopus 로고
    • Economies of scale in U.S. electric power generation
    • Christensen, L. R. & Greene, W. H. (1976). "Economies of scale in U.S. electric power generation, " Journal of Political Economy, 84, 655-676.
    • (1976) Journal of Political Economy , vol.84 , pp. 655-676
    • Christensen, L.R.1    Greene, W.H.2
  • 13
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • Damien, P., Wakefield, J. & Walker, S. G. (1999). "Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, " Journal of the Royal Statistics Society, B61, 331-344.
    • (1999) Journal of the Royal Statistics Society , vol.B61 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.G.3
  • 14
    • 0030242092 scopus 로고    scopus 로고
    • General results on the convergence of stochastic algorithms
    • Delyon, B. (1996). "General results on the convergence of stochastic algorithms, " IEEE Transactions on Automatic Control, 46, 1245-1256.
    • (1996) IEEE Transactions on Automatic Control , vol.46 , pp. 1245-1256
    • Delyon, B.1
  • 19
    • 44949289681 scopus 로고
    • A gamma distributed stochastic frontier model
    • Greene, W. H. (1990). "A gamma distributed stochastic frontier model, " Journal of Econometrics, 46, 141-164.
    • (1990) Journal of Econometrics , vol.46 , pp. 141-164
    • Greene, W.H.1
  • 21
    • 13144294075 scopus 로고    scopus 로고
    • A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems
    • Gu, M. G. s Kong, F. H. (1998). "A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems, " Proceeding of National Academy Sciences USA, 95, 7270-7274.
    • (1998) Proceeding of National Academy Sciences USA , vol.95 , pp. 7270-7274
    • Gu, M.G.1    Kong, F.H.2
  • 22
    • 0035532138 scopus 로고    scopus 로고
    • Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation
    • Gu, M. G. & Zhu, H. T. (2001). "Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation, " Journal of the Royal Statistical Society, B63, 339-355.
    • (2001) Journal of the Royal Statistical Society , vol.B63 , pp. 339-355
    • Gu, M.G.1    Zhu, H.T.2
  • 23
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary variable methods for Markov chain Monte Carlo with applications
    • Higdon, D. (1998). "Auxiliary variable methods for Markov chain Monte Carlo with applications, " Journal of the American Statistical Association, 93, 398-409.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 398-409
    • Higdon, D.1
  • 25
    • 21844520451 scopus 로고
    • Posterior analysis of stochastic frontier models using Gibbs sampling
    • Koop, G., Steel, M. F. J. & Osiewalski, J. (1995). "Posterior analysis of stochastic frontier models using Gibbs sampling, " Computational Statistics 10, 353-373.
    • (1995) Computational Statistics , vol.10 , pp. 353-373
    • Koop, G.1    Steel, M.F.J.2    Osiewalski, J.3
  • 29
    • 0001044972 scopus 로고
    • Finding the observed information matrix using the EM algorithm
    • Louis, T. A. (1982). "Finding the observed information matrix using the EM algorithm, " Journal of the Royal Statistical Society, B44, 224-233.
    • (1982) Journal of the Royal Statistical Society , vol.B44 , pp. 224-233
    • Louis, T.A.1
  • 30
    • 0001183404 scopus 로고
    • Efficiency estimation from Cobb-Douglas production functions with composed error
    • Meeusen, W. and van den Broeck, J. (1977). "Efficiency estimation from Cobb-Douglas production functions with composed error, " International Economic Review, 18, 435-444.
    • (1977) International Economic Review , vol.18 , pp. 435-444
    • Meeusen, W.1    van den Broeck, J.2
  • 31
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neai, R. M. (2003). "Slice sampling, " Annals of Statistics, 31, 705-767.
    • (2003) Annals of Statistics , vol.31 , pp. 705-767
    • Neai, R.M.1
  • 33
    • 0001479142 scopus 로고    scopus 로고
    • Pitfalls of normal-gamma stochastic frontier models
    • Ritter, C. & Simar, L. (1997). "Pitfalls of normal-gamma stochastic frontier models, " Journal of Productivity Analysis, 8, 167-182.
    • (1997) Journal of Productivity Analysis , vol.8 , pp. 167-182
    • Ritter, C.1    Simar, L.2
  • 35
    • 49149143458 scopus 로고
    • Likelihood functions for generalized stochastic frontier estimation
    • Stevenson, R. E. (1980). "Likelihood functions for generalized stochastic frontier estimation, " Journal of Econometrics, 13, 57-66.
    • (1980) Journal of Econometrics , vol.13 , pp. 57-66
    • Stevenson, R.E.1
  • 37
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L. (1994). "Markov chains for exploring posterior distributions, " Annals o/Statistics, 22, 1701-1762.
    • (1994) Annals o/Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 38
    • 0034396444 scopus 로고    scopus 로고
    • Ihfll likelihood inference in normal-gamma stochastic frontier models
    • Tsionas, E. (2000). "Ihfll likelihood inference in normal-gamma stochastic frontier models, " Journal of Productivity Analysis, 13, 183-196.
    • (2000) Journal of Productivity Analysis , vol.13 , pp. 183-196
    • Tsionas, E.1
  • 39
    • 0042904586 scopus 로고    scopus 로고
    • On sampling the degree-of-freedom of Student's-t disturbances
    • Watanabe, T. (2001). "On sampling the degree-of-freedom of Student's-t disturbances, " Statistics-Probability Letters, 52, 177-181.
    • (2001) Statistics-Probability Letters , vol.52 , pp. 177-181
    • Watanabe, T.1
  • 40
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. C. & Tanner, M. A. (1990). "A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, " Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.C.1    Tanner, M.A.2
  • 41
    • 0034372870 scopus 로고    scopus 로고
    • A Monte Carlo study on the finite sample properties of the Gibbs sampling method for a stochastic frontier model
    • Zhang, X. (1999). "A Monte Carlo study on the finite sample properties of the Gibbs sampling method for a stochastic frontier model, " Journal o/Productivity Analysis, 14, 71-83.
    • (1999) Journal o/Productivity Analysis , vol.14 , pp. 71-83
    • Zhang, X.1
  • 42
    • 0141791115 scopus 로고    scopus 로고
    • Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte-Carlo method
    • Zhu, H. T. & Lee, S. Y. (2002). "Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte-Carlo method, " Statistics and Computing, 12, 175-183.
    • (2002) Statistics and Computing , vol.12 , pp. 175-183
    • Zhu, H.T.1    Lee, S.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.